Aroldo Braga Filho

Learn More
BACKGROUND Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation(More)
Gliomas are the most lethal tumors of central nervous system. ATP is an important signaling molecule in CNS and it is a selective P2X7 purinergic receptor ligand at high concentrations. Herein, we investigated whether the activation of P2X7R might be implicated in death of a radiosensitive human glioma lineage. The effects of P2X7R agonists (ATP and BzATP)(More)
Radiation therapy is routinely used in the management of primary central nervous system malignancies. However, the efficacy of this therapeutic modality is limited by the occurrence of resistance. In the present study, we investigated whether modulation of oxidative stress might underlie glioma cell radioresistance. Superoxide dismutase activity in(More)
  • 1