Learn More
We previously showed the isolation of biofilmpersistent Pseudomonas putida mutants that fail to undergo biofilm dispersal upon entry in stationary phase. Two such mutants were found to bear insertions in PP0914, encoding a GGDEF/EAL domain protein with high similarity to Pseudomon asaeruginosa BifA. Here we show the phenotypic characterization of a ΔbifA(More)
Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the(More)
A new cluster of genes has been found downstream of the previously identified thnA2 gene. The gene products are similar to nonacylating aldehyde dehydrogenases (ThnG) and to proteins representing a complete beta-oxidation pathway (ThnH to ThnP). ThnG has a nonacylating NAD-dependent pimelic semialdehyde dehydrogenase activity that renders pimelic acid a(More)
Here we describe two new methods for the genetic characterization of bacterial biofilm development. First, we have designed a microtitre dish-based approach for high-throughput screening of Pseudomonas putida mutants showing increased biofilm under dispersal conditions. Using this method, nine such biofilm-persistent mutants, bearing transposon insertions(More)
The genes required for tetralin biodegradation by Sphingomonas macrogolitabida strain TFA are clustered in two divergent and closely linked operons. ThnR, a LysR-type regulator, activates transcription from each operon in response to tetralin. The regulatory thnR gene is co-transcribed with the catabolic genes thnC, thnA3 and thnA4, resulting in positive(More)
Efficient gene regulation of metabolic pathways implies that the profile of molecules inducing the pathway matches that of the molecules that are metabolized. Gratuitous induction, a well-known phenomenon in catabolic pathways, is the consequence of differences in the substrate and inducer profiles. This phenomenon is particularly evident in pathways for(More)
Out of 8000 candidates from a genetic screening for Pseudomonas putida KT2442 mutants showing defects in biofilm formation, 40 independent mutants with diminished levels of biofilm were analyzed. Most of these mutants carried insertions in genes of the lap cluster, whose products are responsible for synthesis, export and degradation of the adhesin LapA. All(More)
UNLABELLED PatzT is an internal promoter of the atzRSTUVW operon that directs the synthesis of AtzT, AtzU, AtzV, and AtzW, components of an ABC-type cyanuric acid transport system. PatzT is σ(N) dependent, activated by the general nitrogen control regulator NtrC with the assistance of protein integration host factor (IHF), and repressed by the LysR-type(More)
The LysR-type regulator AtzR activates the Pseudomonas sp. ADP atzDEF operon in response to nitrogen limitation and cyanuric acid. Activation involves repositioning of the AtzR tetramer on the PatzDEF promoter and relaxation of an AtzR-induced DNA bend. Here we examine the in vivo and in vitro contribution of an A5 -tract present at the PatzDEF promoter(More)
  • 1