Arnulf Kanzler

Learn More
Traits that differentiate cross-fertile plant species can be dissected by genetic linkage analysis in interspecific hybrids. Such studies have been greatly facilitated in Eucalyptus tree species by the recent development of Diversity Arrays Technology (DArT) markers. DArT is an affordable, high-throughput marker technology for the construction of(More)
During the last 20 years a program to develop and commercialize the Pinus patula × Pinus tecunumanii hybrid, as a replacement for P. patula, has been successfully implemented. The first crosses were initiated during the early 1990s and lead to establishment of field trials across a wide variety of sites. This work gained further impetus when it became(More)
Plantations of Pinus spp. constitute approximately 50% of the South African forestry industry. The first aim of this study was to develop a reliable inoculation technique to screen Pinus spp., for tolerance to infection by F. circinatum, which threatens pine forestry in South Africa. Inoculation of branches was compared with stem inoculations and we(More)
Background F1 hybrids of E. grandis and E. urophylla are commonly grown for pulp and paper production in clonal plantations in tropical and subtropical regions. Improving tree growth [1]and wood quality [2]are important objectives in eucalypt breeding programmes. The efficiency of selection for these traits can be enhanced by molecular breeding approaches(More)
DNA measurement by flow cytometry has been demonstrated to be a potentially useful technic in the diagnosis of bladder cancer by detecting neoplastic cells in bladder washings and urine specimens. The authors' goal was to develop a simple and practical method utilizing the new generation of cytofluorographs designed for use in the clinical laboratory. This(More)
F1 hybrid clones of Eucalyptus grandis and E. urophylla are widely grown for pulp and paper production in tropical and subtropical regions. Volume growth and wood quality are priority objectives in Eucalyptus tree improvement. The molecular basis of quantitative variation and trait expression in eucalypt hybrids, however, remains largely unknown. The recent(More)
Background E. grandis is used extensively for the production of pulp and paper due to its rapid growth, good form and ease of vegetative propagation. E. urophylla exhibits tolerance to fungal diseases that limit the growth of E. grandis in tropical and subtropical regions. Interspecific hybrids of these two species are, therefore, commonly used to produce(More)
  • 1