Arnold I. Caplan

Learn More
A culture system that facilitates the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal progenitor cells has been developed. Cells obtained in bone marrow aspirates were first isolated by monolayer culture and then transferred into tubes and allowed to form three-dimensional aggregates in a chemically defined medium. The inclusion of(More)
Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro(More)
In vivo studies of the roof plate of the spinal cord and midline optic tectum in rodent and the developing subplate in the telencephalon of the chick showed that two glycosaminoglycans, keratin sulfate and chondroitin sulfate, possibly in the proteoglycan form (KS-PG, CS-PG, or KS/CS-PG), were present at times when axons approach closely but do not invade(More)
Bone and cartilage formation in the embryo and repair and turnover in the adult involve the progeny of a small number of cells called mesenchymal stem cells. These cells divide, and their progeny become committed to a specific and distinctive phenotypic pathway, a lineage with discrete steps and, finally, end-stage cells involved with fabrication of a(More)
Adult marrow-derived mesenchymal stem cells (MSCs) are able to differentiate into bone, cartilage, muscle, marrow stroma, tendon-ligament, fat and other connective tissues. The questions can be asked, what do MSCs do naturally and where is the MSC niche? New insight and clinical experience suggest that MSCs are naturally found as perivascular cells,(More)
Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 10(15) cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and(More)
Adult mesenchymal stem cells (MSCs) can be isolated from bone marrow or marrow aspirates and because they are culture-dish adherent, they can be expanded in culture while maintaining their multipotency. The MSCs have been used in preclinical models for tissue engineering of bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues.(More)
Human mesenchymal stem cells (hMSCs) expanded with and without fibroblast growth factor (FGF) supplementation were compared with respect to their proliferation rate, ability to differentiate along the chondrogenic pathway in vitro, and their gene expression profiles. hMSCs expanded in FGF-supplemented medium were smaller and proliferated more rapidly than(More)
Mesenchymal stem cells (MSCs) have been described as being able to give rise to several quite different mesenchymal cell phenotypes. However, the ability to differentiate is not the only characteristic that makes these cells attractive for therapeutic purposes. The secretion of a broad range of bioactive molecules by MSCs, such as growth factors, cytokines(More)
Now that mesenchymal stem cells (MSCs) have been shown to be perivascular in vivo, the existing traditional view that focuses on the multipotent differentiation capacity of these cells should be expanded to include their equally interesting role as cellular modulators that brings them into a broader therapeutic scenario. We discuss existing evidence that(More)