Learn More
In vivo studies of the roof plate of the spinal cord and midline optic tectum in rodent and the developing subplate in the telencephalon of the chick showed that two glycosaminoglycans, keratin sulfate and chondroitin sulfate, possibly in the proteoglycan form (KS-PG, CS-PG, or KS/CS-PG), were present at times when axons approach closely but do not invade(More)
A culture system that facilitates the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal progenitor cells has been developed. Cells obtained in bone marrow aspirates were first isolated by monolayer culture and then transferred into tubes and allowed to form three-dimensional aggregates in a chemically defined medium. The inclusion of(More)
Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro(More)
Cell-based therapies are attractive approaches to promote myelin repair. Recent studies demonstrated a reduction in disease burden in mice with experimental allergic encephalomyelitis (EAE) treated with mouse mesenchymal stem cells (MSCs). Here, we demonstrated human bone marrow-derived MSCs (BM-hMSCs) promote functional recovery in both chronic and(More)
Human mesenchymal stem cells (hMSCs) expanded with and without fibroblast growth factor (FGF) supplementation were compared with respect to their proliferation rate, ability to differentiate along the chondrogenic pathway in vitro, and their gene expression profiles. hMSCs expanded in FGF-supplemented medium were smaller and proliferated more rapidly than(More)
Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 10(15) cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and(More)
Bone and cartilage formation in the embryo and repair and turnover in the adult involve the progeny of a small number of cells called mesenchymal stem cells. These cells divide, and their progeny become committed to a specific and distinctive phenotypic pathway, a lineage with discrete steps and, finally, end-stage cells involved with fabrication of a(More)
Chick embryonic skeletal muscle synthesizes three major types of proteoglycans: large chondroitin sulfate proteoglycans, small dermatan sulfate proteoglycans and small heparan sulfate proteoglycans. A monoclonal antibody has been raised which recognizes the small dermatan sulfate proteoglycan. Immunoblot analysis of a partially purified preparation of(More)
PURPOSE Multipotential mesenchymal stem cells (MSCs) are found in human bone marrow and are shown to secrete hematopoietic cytokines and support hematopoietic progenitors in vitro. We hypothesized that infusion of autologous MSCs after myeloablative therapy would facilitate engraftment by hematopoietic stem cells, and we investigated the feasibility,(More)
Adult marrow-derived mesenchymal stem cells (MSCs) are able to differentiate into bone, cartilage, muscle, marrow stroma, tendon-ligament, fat and other connective tissues. The questions can be asked, what do MSCs do naturally and where is the MSC niche? New insight and clinical experience suggest that MSCs are naturally found as perivascular cells,(More)