Learn More
Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory(More)
RNA interference (RNAi) is a powerful new tool with which to perform loss-of-function genetic screens in lower organisms and can greatly facilitate the identification of components of cellular signalling pathways. In mammalian cells, such screens have been hampered by a lack of suitable tools that can be used on a large scale. We and others have recently(More)
Using a novel approach that detects changes in the conformation of ERalpha, we studied the efficacy of anti-estrogens to inactivate ERalpha under different experimental conditions. We show that phosphorylation of serine-305 in the hinge region of ERalpha by protein kinase A (PKA) induced resistance to tamoxifen. Tamoxifen bound but then failed to induce the(More)
Women carrying germ-line mutations in BRCA1 are strongly predisposed to developing breast cancers with characteristic features also observed in sporadic basal-like breast cancers. They appear as high-grade tumors with high proliferation rates and pushing borders. On the molecular level, they are negative for hormone receptors and ERBB2, display frequent(More)
Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus(More)
UNLABELLED A pathologic complete response to neoadjuvant chemotherapy (NAC) containing platinum is a strong prognostic determinant for patients with muscle-invasive bladder cancer (MIBC). Despite comprehensive molecular characterization of bladder cancer, associations of molecular alterations with treatment response are still largely unknown. We selected(More)
Microarray-based comparative genomic hybridization (CGH) has become a powerful method for the genome-wide detection of chromosomal imbalances. Although BAC microarrays have been used for mouse CGH studies, the resolving power of these analyses was limited because high-density whole-genome mouse BAC microarrays were not available. We therefore developed a(More)
PURPOSE At present, clinically useful markers predicting response of primary breast carcinomas to either doxorubicin-cyclophosphamide (AC) or doxorubicin-docetaxel (AD) are lacking. We investigated whether gene expression profiles of the primary tumor could be used to predict treatment response to either of those chemotherapy regimens. PATIENTS AND(More)
Eberwine(-like) amplification of mRNA adds distinct 6-10 bp nucleotide stretches to the 5' end of amplified RNA transcripts. Analysis of over six thousand microarrays reveals that probes containing motifs complementary to these stretches are associated with aberrantly high signals up to a hundred fold the signal observed in unaffected probes. This is not(More)