Learn More
Conservation prioritization is dominated by the threat status of candidate species. However, species differ markedly in the shared genetic information they embody, and this information is not taken into account if species are prioritized by threat status alone. We developed a system of prioritization that incorporates both threat status and genetic(More)
Diversification is nested, and early models suggested this could lead to a great deal of evolutionary redundancy in the Tree of Life. This result is based on a particular set of branch lengths produced by the common coalescent, where pendant branches leading to tips can be very short compared with branches deeper in the tree. Here, we analyze alternative(More)
BACKGROUND Integrated, efficient, and global prioritization approaches are necessary to manage the ongoing loss of species and their associated function. "Evolutionary distinctness" measures a species' contribution to the total evolutionary history of its clade and is expected to capture uniquely divergent genomes and functions. Here we demonstrate how such(More)
The EDGE (evolutionarily distinct and globally endangered) conservation program (http://www.edgeofexistence.org) uses a composite measure of threat and phylogenetic isolation to rank species for conservation attention. Using primates as a test case, we examined how species that rank highly with this metric represent the collective from which they are drawn.(More)
The Yule (pure-birth) model is the simplest null model of speciation; each lineage gives rise to a new lineage independently with the same rate λ. We investigate the expected length of an edge chosen at random from the resulting evolutionary tree. In particular, we compare the expected length of a randomly selected edge with the expected length of a(More)
BACKGROUND Despite much empirical attention, tests for indirect benefits of mate choice have rarely considered the major components of sexual and nonsexual offspring fitness relevant to a population. Here we use a novel experimental design to test for the existence of any indirect benefits in a laboratory adapted population of D. melanogaster. Our(More)
— Diversification is nested, and early models suggested this could lead to a great deal of evolutionary redundancy in the Tree of Life. This result is based on a particular set of branch lengths produced by the common coalescent, where pendant branches leading to tips can be very short compared to branches deeper in the tree. Here, we analyze alternative(More)
Conservation planning needs to account for limited resources when choosing those species on which to focus attention and resources. Currently, funding is biased to small sections of the tree of life, such as raptors and carnivores. One new approach for increasing the diversity of species under consideration considers how many close relatives a species has(More)
Understanding how to prioritize among the most deserving imperilled species has been a focus of biodiversity science for the past three decades. Though global metrics that integrate evolutionary history and likelihood of loss have been successfully implemented, conservation is typically carried out at sub-global scales on communities of species rather than(More)