Arne Joakim Coldevin Bunkan

  • Citations Per Year
Learn More
The rates of CH3NHNO2 and (CH3)2NNO2 reaction with OH radicals were determined relative to CH3OCH3 and CH3OH at 298 ± 2 K and 1013 ± 10 hPa in purified air by long path FTIR spectroscopy, and the rate coefficients were determined to be k(OH+CH3NHNO2) = (9.5 ± 1.9) × 10(-13) and k(OH+(CH3)2NNO2) = (3.5 ± 0.7) × 10(-12) (2σ) cm(3) molecule(-1) s(-1). Ozone(More)
The kinetics of OH radical reaction with formamide was studied by the relative rate method employing proton transfer reaction-mass spectrometry detection at the European Photochemical Reactor in Valencia, Spain. The rate coefficient was determined to be (4.5 ± 0.4) × 10(-12) cm(3) molecule(-1) s(-1) at 309 ± 3 K and 1013 ± 1 hPa. Isocyanic acid was observed(More)
Quantum chemical methods were used to investigate the OH initiated atmospheric degradation of methanimine, CH2═NH, the major primary product in the atmospheric photo-oxidation of methylamine, CH3NH2. Energies of stationary points on potential energy surfaces of reaction were calculated using multireference perturbation theory and coupled cluster theory. The(More)
The first α,β-unsaturated isoselenocyanate, vinyl isoselenocyanate (H(2)C═CHNCSe), has been synthesized, and its microwave spectrum has been investigated in the 11.5-77.0 GHz spectral range. The microwave work was augmented by quantum chemical calculations using four different methods, namely, CCSD(T), CCSD, B3LYP, and M062X, with the cc-pVTZ basis set. It(More)
On the basis of mass spectrometric experiments and quantum chemical calculations, including detailed kinetic and dynamics calculations, we report the unimolecular dissociation of an isolated glycolate anion. The dominating processes are: loss of formaldehyde; loss of carbon monoxide; loss of carbon dioxide; and loss of a hydrogen molecule, with the latter(More)
We report the unimolecular decomposition of protonated glyceraldehyde, [HOCH(2)CH(OH)CHO]H(+), and protonated dihydroxyacetone, [HOCH(2)C(O)CH(2)OH]H(+). On the basis of mass spectrometric experiments and computational quantum chemistry, we have found that these isomeric ions interconvert freely at energies below that required for their unimolecular(More)
The reactions of OH radicals with CH3NHCHO (N-methylformamide, MF) and (CH3)2NCHO (N,N-dimethylformamide, DMF) have been studied by experimental and computational methods. Rate coefficients were determined as a function of temperature (T = 260-295 K) and pressure (P = 30-600 mbar) by the flash photolysis/laser-induced fluorescence technique. OH radicals(More)
The rate coefficients for the reaction of OH with the alkyl amines: methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylamine (EA) have been determined using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence as a function of temperature from 298 K to ∼600 K. The rate coefficients (10(11) × k/cm(3)(More)
The rate coefficients for the reactions of Cl((2)PJ) with methylamine (R1), dimethylamine (R2) and trimethylamine (R3) have been measured using the laser flash photolysis - resonance fluorescence technique as a function of temperature (274-435 K) and pressure (25-400 Torr N2). The experimental data are well-represented by the following temperature- and(More)
  • 1