Learn More
The femur-tibia (FT) joint of insects is governed by a neuronal network that controls activity in tibial motoneurons by processing sensory information about tibial position and movement provided by afferents of the femoral chordotonal organ (fCO). We show that central arborizations of fCO afferents receive presynaptic depolarizing synaptic inputs. With an(More)
In inactive stick insects, sensory information from the femoral chordotonal organ (fCO) about position and movement of the femur-tibia joint is transferred via local nonspiking interneurons onto extensor and flexor tibiae motoneurons. Information is processed by the interaction of antagonistic parallel pathways at two levels: (1) at the input side of the(More)
The influence of vibratory signals from the femoral chordotonal organ fCO on the activities of muscles and motoneurons in the three main leg joints of the stick insect leg, i.e., the thoraco-coxal (TC) joint, the coxa-trochanteral (CT) joint, and the femur-tibia (FT) joint, was investigated when the animal was in the active behavioral state. Vibration(More)
  • 1