Learn More
Tropomyosin-related kinase (Trk) receptors modulate neuronal structure and function both during development and in the mature nervous system. Interestingly, TrkB and TrkC are expressed as full-length and as truncated splice variants. The cellular function of the kinase-lacking isoforms remains so far unclear. We investigated the role of the truncated(More)
The glutamatergic N-methyl-D-aspartate receptor (NMDAR) is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2) mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory(More)
Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the(More)
Hippocampal synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) is likely to enable synaptic information storage in support of memory formation. The mouse brain has been subjected to intensive scrutiny in this regard; however, a multitude of studies has examined synaptic plasticity in the hippocampal slice(More)
The metabotropic glutamate (mGlu) receptor, mGlu5, is of particular relevance for hippocampal function. It is critically required for the expression of long-term potentiation (LTP) and long-term depression (LTD), regulates neuronal oscillations, maintains the stability of place fields and is required for hippocampus-dependent memory. MGlu5-dysfunctions are(More)
  • 1