Arnaud Rouzée

Learn More
To describe the microscopic properties of matter, quantum mechanics uses wave functions, whose structure and time dependence is governed by the Schrödinger equation. In atoms the charge distributions described by the wave function are rarely observed. The hydrogen atom is unique, since it only has one electron and, in a dc electric field, the Stark(More)
Jochen Küpper, Stephan Stern, Lotte Holmegaard, Frank Filsinger, Arnaud Rouzée, Artem Rudenko, Per Johnsson, Andrew V. Martin, Marcus Adolph, Andrew Aquila, Saša Bajt, Anton Barty, Christoph Bostedt, John Bozek, Carl Caleman, Ryan Coffee, Nicola Coppola, Tjark Delmas, Sascha Epp, Benjamin Erk, Lutz Foucar, Tais Gorkhover, Lars Gumprecht, Andreas Hartmann,(More)
Ionization and fragmentation of methylselenol (CH(3)SeH) molecules by intense (>10(17) W/cm(2)) 5 fs x-ray pulses (ħω=2 keV) are studied by coincident ion momentum spectroscopy. We contrast the measured charge state distribution with data on atomic Kr, determine kinetic energies of resulting ionic fragments, and compare them to the outcome of a Coulomb(More)
We report experiments where hydrogen molecules were dissociatively ionized by an attosecond pulse train in the presence of a near-infrared field. Fragment ion yields from distinguishable ionization channels oscillate with a period that is half the optical cycle of the IR field. For molecules aligned parallel to the laser polarization axis, the oscillations(More)
This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene(More)
Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small- and medium-sized(More)
Electron emission as a result of the interaction of clusters with intense laser pulses is commonly understood in terms of direct and evaporative ionization processes. In contrast, we provide evidence here of an important role played by autoionization in intense field ionization of molecular oxygen clusters. Superexcited states are populated during the(More)
Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron holographic interference patterns with the laser pulse(More)