Learn More
Changes in spontaneous activity, recorded over 15-min periods before, immediately after and within hours after an acute acoustic trauma, were studied in primary auditory cortex of ketamine-anesthetized cats. We focused on the spontaneous firing rate (SFR), the peak cross-correlation coefficient (rho) and burst-firing activity. Multi-units (MUs) were grouped(More)
In this study, an original psychometric procedure was used in order to characterize in more detail than in previous studies the different perceptual components of tinnitus, i.e. auditory sensations which are perceived in the absence of a corresponding external acoustic stimulus. Ten subjects with chronic tinnitus were asked to rate on a numeric scale the(More)
Here we present the changes in cortical activity occurring within a few hours after a 1-h exposure to a 120-dB SPL pure tone (5 or 6 kHz). The changes in primary auditory cortex of 16 ketamine-anesthetized cats were assessed by recording, with two 8-microelectrode arrays, from the same multiunit clusters before and after the trauma. The exposure resulted in(More)
Noise-induced hearing loss induces reorganization of the tonotopic map in cat auditory cortex and increases spontaneous firing rate and neural synchrony. We showed previously that keeping cats after noise trauma in an acoustic environment enriched in high frequencies prevents tonotopic map reorganization. Here, we show the effects of low-frequency and(More)
Sensory environments are known to shape nervous system organization. Here we show that passive long-term exposure to a spectrally enhanced acoustic environment (EAE) causes reorganization of the tonotopic map in juvenile cat auditory cortex without inducing any hearing loss. The EAE consisted of tone pips of 32 different frequencies (5-20 kHz), presented in(More)
The neuroscience of tinnitus represents an ideal model to explore central issues in brain functioning such as the formation of auditory percepts, in addition to opening up new treatment avenues for the condition in the long-term. The present review discusses the origin and nature of tinnitus-related neural activity. First, we review evidence for the(More)
Exposure to sound of sufficient duration and level causes permanent damage to the peripheral auditory system, which results in the reorganization of the cortical tonotopic map. The changes are such that neurons with pre-exposure tuning to frequencies in the hearing loss range now become tuned to frequencies near the near-normal lower boundary of the hearing(More)
Restoration of auditory input through the use of hearing aids has been proposed as a potentially important means of altering tinnitus among those tinnitus sufferers who experience significant sensorineural hearing loss. In animal models of neural plasticity induced by noise trauma, high-frequency stimulation in deafferented regions of the auditory spectrum(More)
Multi-unit (MU) activity and local field potentials (LFP) were simultaneously recorded from 161 sites in the middle cortical layers of the primary auditory cortex (AI) and the anterior auditory field (AAF) in 51 cats. Responses were obtained for frequencies between 625 Hz and 40 kHz, at intensities from 75 dB SPL to threshold. We compared the response(More)
Loudness perception may be controlled by a central gain, possibly dependent on the mean level of the acoustic environment. Owing to hearing loss, for instance, a decrease in sensory inputs could increase this central gain and cause an auditory hypersensitivity or hyperacusis. According to this model, individuals with hyperacusis, provided with an enriched(More)