Learn More
Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc. In addition, mossy fiber terminals show intense immunoreactivity for the inhibitory neurotransmitter GABA. Fast inhibitory transmission at mossy fiber synapses, however, has not previously been reported.(More)
Presynaptic GABAA receptors modulate synaptic transmission in several areas of the CNS but are not known to have this action in the cerebral cortex. We report that GABAA receptor activation reduces hippocampal mossy fibers excitability but has the opposite effect when intracellular Cl- is experimentally elevated. Synaptically released GABA mimics the effect(More)
Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca2+-activated K+ current I(sAHP) and increases neuronal excitability through a(More)
Dentate granule cells process information from the enthorinal cortex en route to the hippocampus proper. These neurons have a very negative resting membrane potential and are relatively silent in the slice preparation. They are also subject to strong feed-forward inhibition. Their unmyelinated axon or mossy fiber ramifies extensively in the hilus and(More)
Although GABA(A) receptors are widely distributed at inhibitory synapses on dendrites and cell bodies of neurons, they also occur in other places, in particular at synapses made on axons and in extrasynaptic membranes. This review summarises some of the evidence that presynaptic receptors modulate transmission not only at primary afferents in the spinal(More)
Anatomical and electrophysiological evidence has raised the possibility that corelease of GABA and glutamate occurs at hippocampal mossy fibre synapses which, however, lack the vesicular GABA transporter VGAT. Here, we apply immunogold cytochemistry to show that GABA, like glutamate, has a close spatial relation to synaptic vesicles in rat mossy fibre(More)
High frequency afferent stimulation of chemical synapses often induces short-term increases in synaptic efficacy, due to increased release probability and/or increased supply of readily releasable synaptic vesicles. This may be followed by synaptic depression, often caused by vesicle depletion. We here describe an additional, novel type of delayed and(More)
Cell types in the dorsal periaqueductal nucleus (PAGd) were studied with the aid of the rapid Golgi method in young cats. The neurons were subdivided into fusiform and stellate types with several varieties of the latter class according to the final destination of their axons. Fusiform neurons send their axons to the neuropil of the Ncom. In turn these(More)
Depending on their subunit composition, GABA(A) receptors can be highly sensitive to Zn(2+). Although a pathological role for Zn(2+)-mediated inhibition of GABA(A) receptors has been postulated, no direct evidence exists that endogenous Zn(2+) can modulate GABAergic signaling in the brain. A possible explanation is that Zn(2+) is mainly localized to a(More)