Learn More
Electromechanical delay (EMD) represents the time lag between muscle activation and muscle force production and is used to assess muscle function in healthy and pathological subjects. There is no experimental methodology to quantify the actual contribution of each series elastic component structures that together contribute to the EMD. We designed the(More)
Our aim was to determine whether muscle synergies are similar across trained cyclists (and thus whether the same locomotor strategies for pedaling are used), despite interindividual variability of individual EMG patterns. Nine trained cyclists were tested during a constant-load pedaling exercise performed at 80% of maximal power. Surface EMG signals were(More)
Exercise-induced fatigue causes changes within the central nervous system that decrease force production capacity in fatigued muscles. The impact on unrelated, non-exercised muscle performance is still unclear. The primary aim of this study was to examine the impact of a bilateral forearm muscle contraction on the motor function of the distal and unrelated(More)
PURPOSE The purpose of this study was to compare neuromuscular adaptations induced by work-matched isoload (IL) versus isokinetic (IK) eccentric resistance training. METHODS A total of 31 healthy subjects completed a 9-wk IL (n = 11) or IK (n = 10) training program for the knee extensors or did not train (control group; n = 10). The IL and IK programs(More)
The objective was to examine the impact of non-postural muscle fatigue on anticipatory postural control, during postural perturbations induced by platform translations. The experimental setup investigated the central changes caused by fatigue without the potential confounding influence of peripheral fatigue within the postural muscles. Fatigue induced in(More)
The present study was designed to determine whether fatigue alters the ability to estimate an index of individual muscle force from shear elastic modulus measurements (experiment I), and to test the ability of this technique to highlight changes in load sharing within a redundant muscle group during an isometric fatiguing task (experiment II). Twelve(More)
The aim of this study was to determine whether and how young participants modulate their postural response to compensate for postural muscle fatigue during predictable but externally initiated continuous and oscillatory perturbations. Twelve participants performed ten postural trials before and after an ankle muscle fatigue protocol. Each postural trial was(More)
The present study was designed to quantify the effect of power output on muscle coordination during rowing. Surface electromyographic (EMG) activity of 23 muscles and mechanical variables were recorded in eight untrained subjects and seven experienced rowers. Each subject was asked to perform three 2-min constant-load exercises performed at 60, 90 and 120%(More)
Ankle muscle activity is important in regulating postural control as well as more complex movement tasks. Fatigue of these muscles clearly influences postural stability; however, the mechanisms responsible for this change have not been well characterized. In this study the fatigue produced in the plantar (PF) and dorsiflexors (DF) during intermittent,(More)
This review aims at analysing the influence of antagonist muscle coactivation and muscle inhibition on the ability of the neuromuscular system to produce an external torque and to account for changes in these two mechanisms with resistance training. Indeed, antagonist muscle coactivation and muscle inhibition occur during muscle contraction in order to(More)