Learn More
GENECLASS2 is a software that computes various genetic assignment criteria to assign or exclude reference populations as the origin of diploid or haploid individuals, as well as of groups of individuals, on the basis of multilocus genotype data. In addition to traditional assignment aims, the program allows the specific task of first-generation migrant(More)
Microsatellite null alleles are commonly encountered in population genetics studies, yet little is known about their impact on the estimation of population differentiation. Computer simulations based on the coalescent were used to investigate the evolutionary dynamics of null alleles, their impact on F(ST) and genetic distances, and the efficiency of(More)
Geneland is a computer package that allows to make use of geo-referenced individual multi-locus genotypes for the inference of the number of populations and of the spatial location of genetic discontinuities between those populations. The main hypothesis and parameters of the model, as well as the different algorithms to perform inferences are first briefly(More)
Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F0 immigrants in populations with(More)
Landscape genetics is a new discipline that aims to provide information on how landscape and environmental features influence population genetic structure. The first key step of landscape genetics is the spatial detection and location of genetic discontinuities between populations. However, efficient methods for achieving this task are lacking. In this(More)
UNLABELLED Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically(More)
BACKGROUND Approximate Bayesian computation (ABC) is a recent flexible class of Monte-Carlo algorithms increasingly used to make model-based inference on complex evolutionary scenarios that have acted on natural populations. The software DIYABC offers a user-friendly interface allowing non-expert users to consider population histories involving any(More)
MOTIVATION DIYABC is a software package for a comprehensive analysis of population history using approximate Bayesian computation on DNA polymorphism data. Version 2.0 implements a number of new features and analytical methods. It allows (i) the analysis of single nucleotide polymorphism data at large number of loci, apart from microsatellite and DNA(More)
UNLABELLED We introduce a new algorithm to account for the presence of null alleles in inferences of populations clusters from individual multilocus genetic data. We show by simulations that the presence of null alleles can affect the accuracy of inferences if not properly accounted for and that our algorithm improve signficantly their accuracy. (More)
Recent studies of the routes of worldwide introductions of alien organisms suggest that many widespread invasions could have stemmed not from the native range, but from a particularly successful invasive population, which serves as the source of colonists for remote new territories. We call here this phenomenon the invasive bridgehead effect. Evaluating the(More)