Armin Mooranian

Learn More
Inflammatory bowel disease (IBD) is defined as a chronic intestinal inflammation that results from host-microbial interactions in a genetically susceptible individual. IBDs are a group of autoimmune diseases that are characterized by inflammation of both the small and large intestine, in which elements of the digestive system are attacked by the body's own(More)
Background:While vascular risk factors including Western-styled diet and obesity are reported to induce cognitive decline and increase dementia risk, recent reports consistently suggest that compromised integrity of cerebrovascular blood–brain barrier (BBB) may have an important role in neurodegeneration and cognitive deficits. A number of studies report(More)
We have demonstrated a permeation-enhancing effect of deoxycholic acid (DCA), the bile acid, in diabetic rats. In this study, we designed DCA-based microcapsules for the oral delivery of the antilipidemic drug probucol (PB), which has potential antidiabetic effects. We aimed to further characterize these microcapsules and examine their pH-dependent release(More)
BACKGROUND In recent studies, we have incorporated bile acid and polyelectrolytes into pancreatic β-cell microcapsules and examined their cell viability and microcapsule morphology using various encapsulating methods. OBJECTIVE This study aimed to incorporate 3 colloids; ultrasonic gel (USG; 1%), polystyrenic sulphate (PSS; 0.1%) and polyallylamine (PAA;(More)
Gliclazide (G) is an antidiabetic drug commonly used in type 2 diabetes. It has extrapancreatic hypoglycemic effects, which makes it a good candidate in type 1 diabetes (T1D). In previous studies, we have shown that a gliclazide-bile acid mixture exerted a hypoglycemic effect in a rat model of T1D. We have also shown that a gliclazide-deoxycholic acid(More)
This study utilized the Seahorse Analyzer to examine the effect of the bile acid ursodeoxycholic acid (UDCA), on the morphology, swelling, stability, and size of novel microencapsulated β-cells, in real-time. UDCA was conjugated with fluorescent compounds, and its partitioning within the microcapsules was examined using confocal microscopy. UDCA produced(More)
CONTEXT We previously designed, developed and characterized a novel microencapsulated formulation as a platform for the targeted delivery of Probucol (PB) in an animal model of Type 2 Diabetes. OBJECTIVE The objective of this study is to optimize this platform by incorporating Chenodeoxycholic acid (CDCA), a bile acid with good permeation-enhancing(More)
Diabetic insulin resistance and pro-diabetic diet are reported to increase dementia risk through unknown mechanisms. Emerging evidence suggests that the integrity of blood-brain barrier (BBB) is central to the onset and progression of neurodegeneration and cognitive impairment. Therefore, the current study investigated the effect of pro-diabetic diets on(More)
OBJECTIVE In a recent study, we developed a new microencapsulating method for β-cell microencapsulation, but cell viability declined rapidly, post microencapsulation, due to potential polymer-polyelectrolyte chelation and non-porous microcapsules' membranes resulting in cell apoptosis. Thus, this study tested the effects of incorporating cationic polyamine(More)
INTRODUCTION In previous studies, we have shown that a gliclazide-cholic acid derivative (G-CA) mixture resulted in an enhanced ileal permeation of G (ex vivo). When administered orally to diabetic rats, it brought about a significant hypoglycaemic effect. In this study, we aim to create a novel microencapsulated-formulation of G-CA with uniform and(More)