Armin Heufelder

Learn More
The ability to concentrate iodide is a fundamental property of normally functioning thyroid tissue and represents the first step in the production of thyroid hormones. Iodide uptake has been demonstrated in various extrathyroidal tissues, including salivary gland, gastric mucosa, and lactating mammary gland. Recently, cloning and molecular characterization(More)
It is acknowledged that the TSH receptor (TSHr) on thyroid follicular cells is the autoantigen involved in the hyperthyroidism of Graves' disease. However, whether this receptor is expressed in extrathyroidal tissues, and whether it participates directly in the pathogenesis of Graves' ophthalmopathy (GO) are unclear. We sought to detect the expression of(More)
The human sodium iodide symporter (hNIS) is an intrinsic transmembrane protein that mediates the active transport of iodide across the basolateral membrane of thyroid follicular cells. In addition to normally functioning thyroid tissue, various extrathyroidal tissues, including salivary gland, lacrimal gland, gastric mucosa, choroid plexus, and lactating(More)
Apoptosis, also called programmed cell death, has attracted great attention in recent years. After its discovery by Carl Vogt in 1842, apoptosis research was dormant for more than a century. Its rediscovery in the second half of this century, and the coining of the term apoptosis in 1972 by Kerr, Wyllie, and Currie, ignited an unparalleled interest in this(More)
The sodium iodide symporter (NIS), an integral basolateral cell membrane protein of thyroid follicular cells, is responsible for active accumulation of iodide within the thyroid gland, a critical step in the biosynthesis of thyroid hormones. After cloning of rat NIS cDNA and of its human counterpart (hNIS), molecular characterization of the human NIS gene(More)
PURPOSE Paracrine/autocrine interactions between orbital fibroblasts (OF) and infiltrating lymphocytes/macrophages are thought to play a central role in the evolution of Graves' ophthalmopathy (GO). Compounds capable of stimulating the proliferation and synthetic capacities of OF may be of particular importance to these processes, because fibroblasts are(More)
Recent data have indicated that orbital fibroblasts (OF) can be stimulated to produce marked quantities of interleukin-1 receptor antagonist (IL-1RA), a powerful inhibitor of the proinflammatory activities of interleukin-1 in the orbital tissues in Graves' ophthalmopathy (GO). We examined whether the beneficial effects of dexamethasone or irradiation, the(More)
PURPOSE To examine the signal transduction pathways involved in the activation of orbital fibroblast effector functions relevant to the pathogenesis of Graves' ophthalmopathy (GO). To determine, using antisense technology, whether the c-myc protooncogene is involved in cell proliferation and glycosaminoglycan (GAG) synthesis in cultured orbital fibroblasts(More)
AIM To identify the relationship of erectile dysfunction, hypogonadism and the metabolic syndrome in the context of men's health. METHODS An Expert Panel Meeting was held in December 2006 in Vienna, Austria. In addition a comprehensive literature search was conducted. RESULTS Men have a higher incidence of cardiovascular events than women of similar(More)
The ability to transport and concentrate iodide, a fundamental property of normally functioning thyroid epithelial cells, represents a key step in the production of the iodine-containing thyroid hormones. Iodide uptake across the basolateral membrane of thyroid follicular cells is made possible by the Na þ /I ¹ symporter (NIS), an active co-transport(More)