Learn More
Caspases are intracellular proteases that mediate mammalian cell apoptosis. Caspase-1 (Casp-1) is a unique caspase because it activates the proinflammatory cytokines interleukin (IL)-1beta and IL-18. Shigella flexneri, the etiological agent of bacillary dysentery, induces macrophage apoptosis, which requires Casp-1 and results in the release of mature(More)
Secretory immunoglobulin (Ig) A (SIgA) is essential in protecting mucosal surfaces. It is composed of at least two monomeric IgA molecules, covalently linked through the J chain, and secretory component (SC). We show here that a dimeric/polymeric IgA (IgA(d/p)) is more efficient when bound to SC in protecting mice against bacterial infection of the(More)
The T cell response to Shigella, the causative agent of bacillary dysentery, remains poorly understood. Using a murine model of infection, we report that Shigella flexneri primes predominately IL-17A- and IL-22-producing Th17 cells. Shigella-specific Th1 cells are only significantly induced on secondary infection, whereas specific Th2 and CD8(+) T cells are(More)
Shigella, a Gram-negative invasive enteropathogenic bacterium, causes the rupture, invasion and inflammatory destruction of the human colonic epithelium. This complex and aggressive process accounts for the symptoms of bacillary dysentery. The so-called invasive phenotype of Shigella is linked to expression of a type III secretory system (TTSS) injecting(More)
To determine the role of humoral mucosal immune response in protection against shigellosis, we have obtained a monoclonal dimeric immunoglobulin A (IgA) antibody specific for Shigella flexneri serotype 5a lipopolysaccharide (mIgA) and used a murine pulmonary infection model that mimics the lesions occurring in natural intestinal infection. Adult BALB/c mice(More)
The invasion plasmid antigen B (IpaB), a 62-kDa plasmid-encoded protein associated with the ability of shigellae to invade epithelial cells, is the bacterial antigen most strongly and consistently recognized by the host during infection. The strong systemic and mucosal immune responses observed against this invasin prompted us to map its B-cell epitopes.(More)
BACKGROUND Shigella species are invasive human pathogens that cause acute rectocolitis by triggering a dysregulated inflammatory reaction in the colonic and rectal mucosa. Because mice are naturally resistant to shigellosis, there is no mouse model that mimics human disease. We explore the susceptibility of intestinal flora-depleted mice to shigellosis(More)
Following several decades of research, there is not yet a convincing vaccine against shigellosis. It is still difficult, in spite of the breadth of strategies (i.e. live attenuated oral, killed oral, subunit parenteral) to select an optimal option. Two approaches are clearly emerging: (i) live attenuated deletion mutants based on rational selection of genes(More)
The lipid A of LPS activates TLR4 through an interaction with myeloid differentiation protein-2 (MD-2) and the degree of lipid A acylation affects TLR4 responsiveness. Two TLR4 single nucleotide polymorphisms (Asp299Gly and Thr399Ile) have been associated with LPS hyporesponsiveness. We hypothesized that the combination of hypoacylation and these single(More)
Shigella, the Gram-negative enteroinvasive bacterium that causes shigellosis, relies on its type III secretion system (TTSS) and injected effectors to modulate host cell functions. However, consequences of the interaction between Shigella and lymphocytes have not been investigated. We show that Shigella invades activated human CD4(+) T lymphocytes. Invasion(More)