Armantas Baginskas

Antanas Kuras14
Vilija Kuraite4
Vaida Batuleviciene3
Damodharan Palani2
14Antanas Kuras
4Vilija Kuraite
3Vaida Batuleviciene
Learn More
Most axons in the mammalian brain are unmyelinated and thin with pre-synaptic specializations (boutons) along their entire paths. The parallel fibers in the cerebellum are examples of such axons. Unlike most thin axons they have only one branch point. The granule cell soma, where they originate, can fire bursts of action potentials with spike intervals of(More)
It has been established that coincident inputs from multiple presynaptic axons are required to achieve a suprathreshold level of excitation for the most of central neurons. The present study, however, was designed to determine whether a train of spikes of an individual retinal ganglion cell (that is, input from a single presynaptic axon) targeting a frog(More)
The dendrites of neurons from many regions of the nervous system contain voltage-sensitive channels that generate persistent inward currents. We have recently suggested that a slow negative wave (sNW), extracellularly observed in the frog tectum during the burst discharge of a single retinal ganglion cell, can be generated as a result of the persistent(More)
Acetylcholine receptors contribute to the control of neuronal and neuronal network activity from insects to humans. We have investigated the action of acetylcholine receptors in the optic tectum of Rana temporaria (common frog). Our previous studies have demonstrated that acetylcholine activates presynaptic nicotinic receptors, when released into the frog(More)
Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of(More)
Nicotinic acetylcholine receptors contribute to the mediation of cholinergic role in attention, vigilance, orienting and detection of behavioral significant stimuli. We have recently demonstrated an increase of the intrinsic recurrent excitatory activity of the tectum column caused by the phasic (after-burst) nicotinic potentiation of a frog single axon(More)
UNLABELLED The aim of the study was to explore the effects of memantine on responses elicited in the frog tectum by the bursts of spikes of moderate strength of a single retina ganglion cell and to gain an insight about the effect of memantine on the L-type Ca(2+) current. MATERIAL AND METHODS The experiments were performed in vivo on adult frogs (Rana(More)
Neurons may release more than one classical neurotransmitter (co-mediator). It has been demonstrated in a recent study that a burst of action potentials in frog retina ganglion cells induces an after-burst increase (phasic potentiation) of the retinotectal transmission that lasts tens of seconds. This increase is mediated by presynaptic nicotinic(More)
It is well established that cholinergic modulation of functioning of neuronal networks is common in the central nervous system at all scales from neuronal columns to large nuclei. It is involved in various attentional, cognitive and behavioral performances. We have recently demonstrated that a frog retinotectal transmission exhibits after-burst (phasic)(More)
We investigated the ability of a grease-gap method to record fast and slow changes of the membrane potential from bundles of gray matter axons. Their membrane potentials are of particular interest because these axons are different from most axons that have been investigated using intra-axonal or gap techniques. One of the main differences is that gray(More)