Armando Manduca

Learn More
A nuclear magnetic resonance imaging (MRI) method is presented for quantitatively mapping the physical response of a material to harmonic mechanical excitation. The resulting images allow calculation of regional mechanical properties. Measurements of shear modulus obtained with the MRI technique in gel materials correlate with independent measurements of(More)
Magnetic resonance elastography (MRE) is a phase-contrast-based MRI imaging technique that can directly visualize and quantitatively measure propagating acoustic strain waves in tissue-like materials subjected to harmonic mechanical excitation. The data acquired allows the calculation of local quantitative values of shear modulus and the generation of(More)
In clinical magnetic resonance imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in compressive sensing (CS) theory, several authors have demonstrated that certain classes of MR images which(More)
BACKGROUND & AIMS Accurate detection of hepatic fibrosis is crucial for assessing prognosis and candidacy for treatment in patients with chronic liver disease. Magnetic resonance (MR) elastography, a technique for quantitatively assessing the mechanical properties of soft tissues, has been shown previously to have potential for noninvasively detecting liver(More)
In clinical magnetic resonance imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in compressive sensing (CS) theory, several authors have demonstrated that certain classes of MR images which(More)
Grayscale inhomogeneities in magnetic resonance (MR) images confound quantitative analysis of these images. Homomorphic unsharp masking and its variations have been commonly used as a post-processing method to remove inhomogeneities in MR images, However, little data is available in the literature assessing the relative effectiveness of these algorithms to(More)
The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for noninvasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has(More)
The purpose of this study was to obtain normative data using magnetic resonance elastography (MRE) (a) to obtain estimates of the shear modulus of human cerebral tissue in vivo and (b) to assess a possible age dependence of the shear modulus of cerebral tissue in healthy adult volunteers. MR elastography studies were performed on tissue-simulating gelatin(More)
The purposes of this study were to develop a method to measure brain and white matter hyperintensity (leukoaraiosis) volume that is based on the segmentation of the intensity histogram of fluid-attenuated inversion recovery (FLAIR) images and to assess the accuracy and reproducibility of the method. Whole-head synthetic image phantoms with manually(More)
Mammographic percent density (PD) is a strong risk factor for breast cancer, but there has been relatively little systematic evaluation of other features in mammographic images that might additionally predict breast cancer risk. We evaluated the association of a large number of image texture features with risk of breast cancer using a clinic-based(More)