Learn More
Increasing demands on electricity supply, with the need for system economic optimization and power system growth limitations, have a significant impact on power system reliability. When the system operates in extreme conditions, load shedding, generation shedding, or system islanding must occur to prevent total system collapse. Typical causes of system(More)
A fast accurate fault location solution for power distribution feeders enables utility companies to clear a fault quicker and reduce the outage duration. Traditional impedance-based fault location methods assume that all feeder sections have the same impedance characteristics. This assumption introduces errors on feeders that have branches and line sections(More)
Excessive heat and mechanical stress during through faults on transformers are recognized as the two major causes of damage. New technology in transformer protection relays provides for both thermal and through-fault monitoring. Fig. 1: Transformer relay with connected RTDs for thermal monitoring Fig. 2: Relative aging vs. hottest-spot temperature This(More)
Broken rotor bars in induction motors can be dependably detected by analyzing the current signatures under sufficient motor load conditions. Detection becomes less dependable under light motor load conditions. There are also cases in which tolerable motor operating conditions generate current signatures similar to those of motors with broken rotor bars.(More)
Growth in electric load, without a corresponding growth in service infrastructure, results in systems operating closer to voltage and frequency instability. While rotor angle stability, or real power stability, can be determined by balancing load and generation, until recent advances in technology, it was difficult to quantify or predict voltage stability.(More)
This paper describes details of the signal processing techniques that a protective relay uses to provide both synchronized phasor measurements and line distance protection. The paper also presents a comprehensive system model of normal and faulted power system operating conditions. Finally, the paper provides power system model test results that demonstrate(More)
The need for distributed generation (DG) has become more and more popular because of the adverse effects of fossil fuels and the fear of running out of fossil fuels. By having DG, there are less transmission losses, voltage support, controllability of the system, decreased costs in transmission and distribution, power quality improvement, energy efficiency,(More)