Learn More
We examined the effect of spinal cord-derived neural stem/progenitor cells (NSPCs) after delayed transplantation into the injured adult rat spinal cord with or without earlier transplantation of bone marrow-derived mesenchymal stromal cells (BMSCs). Either BMSCs or culture medium were transplanted immediately after clip compression injury (27 g force), and(More)
Self-renewing, multipotent neural progenitor cells (NPCs) reside in the adult mammalian spinal cord ependymal region. The current study characterized, in vitro, the native differentiation potential of spinal cord NPCs isolated from adult enhanced green fluorescence protein rats. Neurospheres were differentiated, immunocytochemistry (ICC) was performed, and(More)
BACKGROUND Neural stem/progenitor cells derived from the ependymal region of the spinal cord may have the ability to regenerate the injured mammalian spinal cord as they do in some lower vertebrates. It has also been suggested that BMSCs provide an environment conducive to regeneration in the injured cord. METHODS In the current study, both spinal(More)
Green fluorescent protein (GFP) expression was evaluated in tissues of different transgenic rodents--Sprague-Dawley (SD) rat strain [SD-Tg(GFP)Bal], W rat strain [Wistar-TgN(CAG-GFP)184ys], and M mouse strain [Tg(GFPU)5Nagy/J]--by direct fluorescence of native GFP expression and by immunohistochemistry. The constitutively expressing GFP transgenic strains(More)
BACKGROUND Mesenchymal progenitor cells (MPCs) have been isolated from a variety of connective tissues, and are commonly called "mesenchymal stem cells" (MSCs). A stem cell is defined as having robust clonal self-renewal and multilineage differentiation potential. Accordingly, the term "MSC" has been criticised, as there is little data demonstrating(More)
Current understanding of microglial involvement in disease is influenced by the observation that recruited bone marrow (BM)-derived cells contribute to reactive microgliosis in BM-chimeric mice. In contrast, a similar phenomenon has not been reported for BM-chimeric rats. We investigated the recruitment and microglial transformation of BM-derived cells in(More)
Although bone marrow-derived mesenchymal stromal cells (MSCs) may be beneficial in treating heart disease, their ability to transdifferentiate into functional cardiomyocytes remains unclear. Here, bone marrow-derived MSCs from adult female transgenic mice expressing green fluorescent protein (GFP) under the control of the cardiac-specific alpha-myosin heavy(More)
Cardiovascular disease is the number-one cause of mortality in the developed world. The aim of this study is to define the mechanisms by which bone marrow progenitor cells are mobilized in response to cardiac ischemic injury. We used a closed-chest model of murine cardiac infarction/reperfusion, which segregated the surgical thoracotomy from the induction(More)
The method for long-term culture of marrow cells in vitro as described by Dexter has recently been successfully applied to human marrow and is dependent on the development of an adherent stromal cell layer consisting of cells described as "endothelial-like cells, fat cells, and macrophages". The present study was designed to determine the origin and(More)
BACKGROUND Most forms of chronic kidney disease are characterized by progressive renal and cardiac fibrosis leading to dysfunction. Preliminary evidence suggests that various bone marrow-derived cell populations have antifibrotic effects. In exploring the therapeutic potential of bone marrow derived cells in chronic cardio-renal disease, we examined the(More)