Learn More
Purely bottom-up, unsupervised segmentation of a single image into foreground and background regions remains a challenging task for computer vision. Co-segmentation is the problem of simultaneously dividing multiple images into regions (segments) corresponding to different object classes. In this paper, we combine existing tools for bottom-up image(More)
We present a new unsupervised algorithm to discover and segment out common objects from large and diverse image collections. In contrast to previous co-segmentation methods, our algorithm performs well even in the presence of significant amounts of noise images (images not containing a common object), as typical for datasets collected from Internet search.(More)
Bottom-up, fully unsupervised segmentation remains a daunting challenge for computer vision. In the cosegmentation context, on the other hand, the availability of multiple images assumed to contain instances of the same object classes provides a weak form of supervision that can be exploited by discriminative approaches. Unfortunately, most existing(More)
In this paper, we tackle the problem of performing efficient co-localization in images and videos. Co-localization is the problem of simultaneously localizing (with bounding boxes) objects of the same class across a set of distinct images or videos. Building upon recent state-of-the-art methods, we show how we are able to naturally incorporate temporal(More)
We introduce a model for bidirectional retrieval of images and sentences through a deep, multi-modal embedding of visual and natural language data. Unlike previous models that directly map images or sentences into a common embedding space, our model works on a finer level and embeds fragments of images (objects) and fragments of sentences (typed dependency(More)
This paper explores a simple and efficient baseline for text classification. Our experiments show that our fast text clas-sifier fastText is often on par with deep learning classifiers in terms of accuracy , and many orders of magnitude faster for training and evaluation. We can train fastText on more than one billion words in less than ten minutes using a(More)
Visual question answering (VQA) is an interesting learning setting for evaluating the abilities and shortcomings of current systems for image understanding. Many of the recently proposed VQA systems include attention or memory mechanisms designed to support " reasoning ". For multiple-choice VQA, nearly all of these systems train a multi-class classifier on(More)
Recurrent neural network is a powerful model that learns temporal patterns in sequential data. For a long time, it was believed that recurrent networks are difficult to train using simple optimizers, such as stochastic gradient descent, due to the so-called vanishing gradient problem. In this paper, we show that learning longer term patterns in real data,(More)
In this paper, we tackle the problem of co-localization in real-world images. Co-localization is the problem of simultaneously localizing (with bounding boxes) objects of the same class across a set of distinct images. Although similar problems such as co-segmentation and weakly supervised localization have been previously studied, we focus on being able to(More)
We present a new clustering algorithm by proposing a convex relaxation of hierarchical clustering, which results in a family of objective functions with a natural geometric interpretation. We give efficient algorithms for calculating the continuous regularization path of solutions, and discuss relative advantages of the parameters. Our method experimentally(More)