Armand Djouguela

Learn More
In this paper we describe a concept for dosimetric treatment plan verification using two-dimensional ionization chamber arrays. Two different versions of the 2D-ARRAY (PTW-Freiburg, Germany) will be presented, a matrix of 16 x 16 chambers (chamber cross section 8 mm x 8 mm; the distance between chamber centers, 16 mm) and a matrix of 27 x 27 chambers(More)
The spatial resolution of 2D detector arrays equipped with ionization chambers or diodes, used for the dose verification of IMRT treatment plans, is limited by the size of the single detector and the centre-to-centre distance between the detectors. Optimization criteria with regard to these parameters have been developed by combining concepts of dosimetry(More)
The two-dimensional lateral dose profiles D(x, y) of narrow photon beams, typically used for beamlet-based IMRT, stereotactic radiosurgery and tomotherapy, can be regarded as resulting from the convolution of a two-dimensional rectangular function R(x, y), which represents the photon fluence profile within the field borders, with a rotation-symmetric(More)
The unshielded Si diode PTW 60012, used for accurate measurements of the transversal dose profiles of narrow photon beams, has been investigated with regard to its linearity, photon energy dependence and spatial resolution. The diode shows a slight supralinearity, i.e., increase of the response with pulse dose, by 3% over the pulse dose range 0.1 to 0.8(More)
In consideration of the importance of film dosimetry for the dosimetric verification of IMRT treatment plans, the Schwarzschild effect or failure of the reciprocity law, i.e. the reduction of the net optical density under 'protraction' or 'fractionation' conditions at constant dose, has been experimentally studied for Kodak XOMAT-V (Martens et al 2002 Phys.(More)
Permanent in vivo verification of IMRT photon beam profiles by a radiation detector with spatial resolution, positioned on the radiation entrance side of the patient, has not been clinically available so far. In this work we present the DAVID system, which is able to perform this quality assurance measurement while the patient is treated. The DAVID system(More)
The two-dimensional verification of intensity-modulated radiation plans is one of the major requirements for the safe application of this technique. The present study examines the resolution and sensitivity of a two-dimensional ionisation-chamber array (PTW2D-Array, type 10024), which can be used for plan verification instead of films. According to the(More)
In the dosimetry of narrow photon fields with side lengths of the order of 1 cm, the traditional parametrisation via the absolute dose on the beam axis and the relative lateral dose distribution has to deal with the difficulty to find sufficiently small detectors and to adjust them accurately on the narrow-beam axis. This can be avoided by reconsidering the(More)
To investigate the attenuation of a carbon-fiber tabletop and a combiboard, alongside with the depth-dose profile in a solid-water phantom. Depth-dose measurements were performed with a Roos chamber for 6- and 10-MV beams for a typical field size (15 cm × 15 cm, SSD [source-surface distance] 100 cm). A rigid-stem ionization chamber was used to measure(More)
The magnitude of the Schwarzschild effect or failure of the reciprocity law has been experimentally investigated for the dosimetry film EDR 2 from Kodak. When the dose rate applied to achieve a given dose was reduced by a factor of 12, the net optical density was reduced by up to 5%. The clinical importance of this effect is negligible as long as the films(More)
  • 1