Learn More
The slow kinetics of G protein-activated K+ (GIRK) channels expressed in Xenopus oocytes were studied in single-channel, inside-out membrane patches. Channels formed by GIRK1 plus GIRK4 subunits, which are known to form the cardiac acetylcholine (ACh)-activated GIRK channel (KACh), were activated by a near-saturating dose of G protein betagamma subunits(More)
Cell membrane fluctuations (CMF) of human erythrocytes, measured by point dark field microscopy, were shown to depend, to a large extent, on intracellular MgATP (Levin, S.V., and R. Korenstein. 1991. Biophys. J. 60:733-737). The present study extends that investigation and associates CMF with F-actin's ATPase activity. MgATP was found to reconstitute CMF in(More)
Membrane fusion between the human immunodeficiency virus (HIV) and the target cell plasma membrane is correlated with conformational changes in the HIV gp41 glycoprotein, which include an early exposed conformation (prehairpin) and a late low energy six helix bundle (SHB) conformation also termed hairpin. Peptides resembling regions from the exposed(More)
Extracellular fluid macroviscosity (EFM), modified by macromolecular cosolvents as occurs in body fluids, has been shown to affect cell membrane protein activities but not isolated proteins. In search for the mechanism of this phenomenon, we examined the effect of EFM on mechanical fluctuations of the cell membrane of human erythrocytes. The macroviscosity(More)
A time-dependent set of line scans across an erythrocyte was recorded by a phase contrast laser scanning microscope. A method for edge detection, based on a two-stage fitting procedure of the theoretical intensity distribution in a line scan of phase contrast image to the experimental one, is suggested. Time-resolved fluctuations of the human erythrocyte's(More)
We present a novel approach, based on atomic force microscopy, for exploring the local elastic properties of the membrane-skeleton complex in living cells. Three major elements constitute the basis for the proposed method: (1) pulling the cell membrane by increasing the adhesion of the tip to the cell surface provided via appropriate tip modification; (2)(More)
BACKGROUND Dialysis patients, often carriers of Staphylococcus aureus in their nares, are at high risk of S. aureus infections. METHODS We examined whether RNAIII inhibiting peptide (RIP), which interferes with quorum sensing mechanisms, reduces adherence of S. aureus to host cells and to dialysis catheter polymers in vitro. Adherence was tested by(More)
Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases(More)
The roles of metal ions in promoting amyloid β-protein (Aβ) oligomerization associated with Alzheimer disease are increasingly recognized. However, the detailed structures dictating toxicity remain elusive for Aβ oligomers stabilized by metal ions. Here, we show that small Zn(2+)-bound Aβ1-40 (Zn(2+)-Aβ40) oligomers formed in cell culture medium exhibit(More)
Complexity of cell membrane poses difficulties to quantify corresponding morphology changes during cell proliferation and damage. We suggest using fractal dimension of the cell membrane to quantify its complexity and track changes produced by various treatments. Glutaraldehyde fixed mouse RAW 264.7 macrophage membranes were chosen as model system and imaged(More)