Learn More
– The response of turbulent flow to time-modulated forcing is studied by direct numerical simulations of the Navier-Stokes equations. The large-scale forcing is modulated via periodic energy input variations at frequency ω. The response is maximal for frequencies in the range of the inverse of the large eddy turnover time, confirming the mean-field(More)
Inviscid regularization modeling of turbulent flow is investigated. Homogeneous, isotropic, decaying turbulence is simulated at a range of filter widths. A coarse-graining of turbulent flow arises from the direct regularization of the convective nonlinearity in the Navier–Stokes equations. The regularization is translated into its corresponding sub-filter(More)
Classically, large-scale forced turbulence is characterized by a transfer of energy from large to small scales via nonlinear interactions. We have investigated the changes in this energy transfer process in broadband forced turbulence where an additional perturbation of flow at smaller scales is introduced. The modulation of the energy dynamics via the(More)
The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved over an extended range of scales beyond the directly forced(More)
a r t i c l e i n f o a b s t r a c t Two modified segregated PISO algorithms are proposed, which are constructed to avoid the development of spurious oscillations in the computed flow near sharp interfaces of conjugate fluid–porous domains. The new collocated finite volume algorithms modify the Rhie–Chow interpolation to maintain a correct(More)
A B S T R A C T The characteristics-based ssolution. It is easy to verify thatectional method (CBSM) offers an Eulerian description of an internally mixed aerosol. It was shown to be robust and capable of exact preservation of lower order moments, allowing for highly skewed sectional droplet size distributions. In this paper we apply CBSM to a spatially(More)
Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e. a monodisperse glycerol(More)