Learn More
Transgenic tomato plants expressing the pear fruit polygalacturonase inhibitor protein (pPGIP) were used to demonstrate that this inhibitor of fungal pathogen endopolygalacturonases (endo-PGs) influences disease development. Transgenic expression of pPGIP resulted in abundant accumulation of the heterologous protein in all tissues and did not alter the(More)
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating(More)
Programmed cell death (PCD) in plant cells is often accompanied by biochemical and morphological hallmarks similar to those of animal apoptosis. However, orthologs of animal caspases, cysteinyl aspartate-specific proteases that constitute the core component of animal apoptosis, have not yet been identified in plants. Recent studies have revealed the(More)
Botrytis cinerea, the causal agent of blight, rot, and gray mold on many plant species, secretes various endopolygalacturonases during all stages of infection. The expression pattern of the encoding genes (Bcpg 1-6) was studied on four hosts: tomato, broad bean, apple, and courgette (also known as zucchini). All gene family members are differentially(More)
The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum lycopersicum (Sl)] PLC gene family. Six Sl PLC-encoding cDNAs(More)
The phytopathogenic fungus Botrytis cinerea produces a set of endopolygalacturonases (endoPGs) which are involved in the enzymatic degradation of pectin in plant cell walls. The endoPG-encoding genes of B. cinerea are differentially expressed when the fungus is grown in liquid culture on different carbon sources. A basic constitutive expression level was(More)
Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or(More)
Botrytis cinerea, a fungus that causes diseases in over 200 plant species, secretes a number of endopolygalacturonases that have been suggested to be involved in pathogenesis. However, so far the corresponding genes have not been isolated from this fungus. We cloned Bcpg1, encoding endopolygalacturonase, with the pgaII gene from Aspergillus niger as a(More)
Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene,(More)
Botrytis cinerea is a plant-pathogenic fungus infecting over 200 different plant species. We use a molecular genetic approach to study the process of pectin degradation by the fungus. Recently, we described the cloning and characterization of an endopolygalacturonase (endoPG) gene from B. cinerea (Bcpg1) which is required for full virulence. Here we(More)