Arjen L. J. van Hulzen

Learn More
OBJECT The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. METHODS The targeting error during electrode placement was assessed(More)
Diffusion tensor imaging (DTI) is a recent technique that utilizes diffusion of water molecules to make assumptions about white matter tract architecture of the brain. Early on, neurosurgeons recognized its potential value in neurosurgical planning, as it is the only technique that offers the possibility for in vivo visualization of white matter tracts. In(More)
BACKGROUND In deep brain stimulation (DBS), accurate placement of the lead is critical. Target definition is highly dependent on visual recognition on magnetic resonance imaging (MRI). We prospectively investigated whether the 7-T MRI enabled better visualization of targets and led to better placement of leads compared with the 1.5-T and the 3-T MRI. (More)
BACKGROUND Visualization of the precise course of the visual pathways is relevant to prevent damage that may inflict visual field deficits during neurosurgical resections. In particular the optic radiations (OR) are susceptible to such damage during neurosurgery. Cortical pathways can be mapped in vivo, by using Diffusion Tensor Imaging (DTI). Visualization(More)
OBJECT Accurate placement of the leads is crucial in deep brain stimulation (DBS). To optimize the surgical positioning of the lead, a combination of anatomical targeting on MRI, electrophysiological mapping, and clinical testing is applied during the procedure. Electrophysiological mapping is usually done with microelectrode recording (MER), but the(More)
Transcranial Electrical Stimulation (TES) is an important procedure in intraoperative motor monitoring. When neurosurgery is performed at certain difficult locations within the central nervous system (CNS), TES evaluates CNS functions during surgical manipulations to prevent post-operative complications. In TES, electrical stimulation is provided to the(More)
  • 1