Arja Paananen

Learn More
Hydrophobins are proteins specific to filamentous fungi. Hydrophobins have several important roles in fungal physiology, for example, adhesion, formation of protective surface coatings, and the reduction of the surface tension of water, which allows growth of aerial structures. Hydrophobins show remarkable biophysical properties, for example, they are the(More)
We have crystallized the ascomycete laccase from Melanocarpus albomyces with all four coppers present and determined the crystal structure at 2.4 A resolution. The enzyme is heavily glycosylated and consists of three cupredoxin-like domains, similar to those found in the Cu-depleted basidiomycete laccase from Coprinus cinereus. However, there are(More)
Powered by TCPDF (www.tcpdf.org) This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for(More)
Hydrophobins are highly surface-active proteins that are specific to filamentous fungi. They function as coatings on various fungal structures, enable aerial growth of hyphae, and facilitate attachment to surfaces. Little is known about their structures and structure-function relationships. In this work we show highly organized surface layers of(More)
Improved ways to cleave peptide chains at engineered sites easily and specifically would form useful tools for biochemical research. Uses of such methods include the activation or inactivation of enzymes or the removal of tags for enhancement of recombinant protein expression or tags used for purification of recombinant proteins. In this work we show by gel(More)
Hydrophobins are amphiphilic proteins produced by filamentous fungi. They function in a variety of roles that involve interfacial interactions, as in growth through the air-water interface, adhesion to surfaces, and formation of coatings on various fungal structures. In this work, we have studied the formation of films of the class II hydrophobin HFBI from(More)
Surface plasmon resonance (SPR) has been used to assay the roles of amino acid residues in the substrate binding cleft of Trichoderma harzianum chitinase Chit42, which belongs to the glycoside hydrolase family 18 (GH-18). Nine different Chit42 variants having amino acid mutations along the binding site cleft at subsites -4 to +2 were created and(More)
Carbohydrate-protein interactions govern many crucial life processes involved in cell recognition events, but are often difficult to study because the interactions are weak, and multivalent exposure appears to be crucial for their biological function. We have used self-assembled monolayers (SAMs) of neoglycoconjugates as a model system to probe the specific(More)
Hydrophobins are extracellular proteins produced by filamentous fungi. They show a variety of functions at interfaces that help fungi to adapt to their environment by, for example, adhesion, formation of coatings, and lowering the surface tension of water. Hydrophobins fold into a globular structure and have a distinct hydrophobic patch on their surface(More)
We present an approach where biomolecular self-assembly is used in combination with lithography to produce patterns of metallic nanoparticles on a silicon substrate. This is achieved through a two-step method, resulting in attachment of nanoparticles on desired sites on the sample surfaces, which allowed a detailed characterization. First, a genetically(More)