Aristias Boeck

Learn More
In-frame deletions were introduced into each of the eight genes of the hyc operon coding for products required for the formation of the formate hydrogenlyase (FHL) system. The deletions were transferred to the chromosome and the resulting mutants were analysed for development of formate dehydrogenase H and hydrogenase 1, 2 and 3 activity. It was found that(More)
An 8kb segment of DNA from the 58/59 min region of the E. coli chromosome, which complements the defect of a mutant devoid of hydrogenase 3 activity, has been sequenced. Eight open reading frames were identified which are arranged in a transcriptional unit; all open reading frames were transcribed and translated in vivo in a T7 promoter/polymerase system.(More)
The products of a minimum of 15 genes are required for the synthesis of an active formate-hydrogenlyase (FHL) system in Escherichia coli. All are co-ordinately regulated in response to variations in the oxygen and nitrate concentration and the pH of the culture medium. Formate is obligately required for transcriptional activation of these genes. Analysis of(More)
Selected members of the genus Astragalus (Fabaceae) are known for their ability to accumulate high levels of selenium, mainly in the form of Se-methyl-selenocysteine. With the aid of cell cultures we have investigated the molecular basis for selenium tolerance of these plants. It is shown that cultured cells from a selenium-accumulating Astragalus species(More)
The maturation of [NiFe] hydrogenases includes formation of the nickel metallocenter, proteolytic processing of the metal center carrying large subunit, and its assembling with other hydrogenase subunits. The hydrogenase maturating enzyme HYBD from Escherichia coli, a protease of molecular mass 17.5 kDa, specifically cleaves off a 15 amino acid peptide from(More)
Several plant species can tolerate high concentrations of selenium in the environment, and they accumulate organoselenium compounds. One of these compounds is Se-methylselenocysteine, synthesized by a number of species from the genus Astragalus (Fabaceae), like A. bisulcatus. An enzyme has been previously isolated from this organism that catalyzes methyl(More)
The structural gene (fdhF) for the 80-kDa selenopolypeptide of formate dehydrogenase (formate:benzyl viologen oxidoreductase, EC 1.2.--.--) from Escherichia coli contains an in-frame UGA codon at amino acid position 140 that is translated. Translation of gene fusions between N-terminal parts of fdhF with lacZ depends on the availability of selenium in the(More)
Purification of the large subunit, HYCE, of Escherichia coli hydrogenase 3 revealed that it is a nickel-containing polypeptide, which is subject to C-terminal proteolytic processing. This processing reaction could be performed in vitro with partially purified components, yielding a low-molecular mass C-terminal peptide which was resolved in a(More)
The hybG gene product from Escherichia coli has been identified as a chaperone-like protein acting in the maturation of hydrogenases 1 and 2. It was shown that HybG forms a complex with the precursor of the large subunit of hydrogenase 2. As with HypC, which is the chaperone-like protein involved in hydrogenase 3 maturation, the N-terminal cysteine residue(More)