Learn More
Sigma-1 receptors are associated with Alzheimer's disease, major depressive disorders, and schizophrenia. These receptors show progrowth/antiapoptotic properties via their chaperoning functions to counteract ER (endoplasmic reticulum) stress, to block neurodegeneration, and to regulate neuritogenesis. The sigma-1 receptor knock out mouse offered an(More)
sigma Receptors, once considered a class of opioid receptors, are now regarded as a unique class of receptors that contain binding sites for a wide range of ligands, including the drug 1-N(2',6'-dimethylmorpholino)3-(4-t-butylpropylamine) (fenpropimorph), a yeast sterol isomerase inhibitor. Because fenpropimorph has high-binding affinity to the sigma-1(More)
In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used(More)
sigma-1 receptors represent unique binding sites that are capable of interacting with a wide range of compounds to mediate different cellular events. The composition of the ligand binding site of this receptor is unclear, since no NMR or crystal structures are available. Recent studies in our laboratory using radiolabeled photoreactive ligands suggested(More)
Radioiodinated photoactivatable photoprobes can provide valuable insights regarding protein structure. Previous work in our laboratory showed that the cocaine derivative and photoprobe 3-[ (125)I]iodo-4-azidococaine ([ (125)I]IACoc) binds to the sigma-1 receptor with 2-3 orders of magnitude higher affinity than cocaine [Kahoun, J. R. (1992) Proc. Natl.(More)
Breast cancer is a heterogeneous disease at both the histological and molecular levels. The current model of breast tumorigenesis suggests that the normal mammary stem cell and the various progenitors that arise thereof can be transformed and generate lineage-restricted tumor phenotypes. This model is supported by observations that the different subtypes of(More)
The sigma-2 (σ2) receptor has been suggested to be a promising target for pharmacological interventions to curb tumor progression. Development of σ2-specific ligands, however, has been hindered by lack of understanding of molecular determinants that underlie selective ligand-σ2 interactions. Here we have explored effects of electron donating and withdrawing(More)
  • 1