Ariel Salort

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
This is a joint work with A. Salort and N. Wolanski. We continue our study of the large time behavior of the bounded solution to the nonlocal diffusion equation with absorption u t = Lu − u p in R N × (0, ∞), u(x, 0) = u 0 (x) in R N , where p > 1, u 0 ≥ 0 and bounded and Lu(x, t) = J(x − y) (u(y, t) − u(x, t)) dy with J ∈ C ∞ 0 (R N), radially symmetric, J(More)
In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the the spectral counting function of the Laplace operator on unbounded(More)
  • 1