Learn More
The introduction of loopy belief propagation (LBP) revitalized the application of graphical models in many domains. Many recent works present improvements on the basic LBP algorithm in an attempt to overcome convergence and local optima problems. Notable among these are convexified free energy approximations that lead to inference procedures with provable(More)
Protein-protein interactions play a major role in most cellular processes. Thus, the challenge of identifying the full repertoire of interacting proteins in the cell is of great importance and has been addressed both experimentally and computationally. Today, large scale experimental studies of protein interactions, while partial and noisy, allow us to(More)
Relational Markov Random Fields are a general and flexible framework for reasoning about the joint distribution over attributes of a large number of interacting entities. The main computational difficulty in learning such models is inference. Even when dealing with complete data, where one can summarize a large domain by sufficient statistics, learning(More)
The FastInf C++ library is designed to perform memory and time efficient approximate inference in large-scale discrete undirected graphical models. The focus of the library is propagation based approximate inference methods, ranging from the basic loopy belief propagation algorithm to propagation based on convex free energies. Various message scheduling(More)
Protein-protein interactions play a major role in most cellular processes. Thus, the challenge of identifying the full repertoire of interacting proteins in the cell is of great importance, and has been addressed both experimentally and computationally. Today, large scale experimental studies of interacting proteins , while partial and noisy, allow us to(More)
The regulation of cellular protein levels is a complex process involving many regulatory mechanisms, each introducing stochastic events, leading to variability of protein levels between isogenic cells. Previous studies have shown that perturbing genes involved in transcription regulation affects the amount of cell-to-cell variability in protein levels, but(More)
MOTIVATION The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5-10 bp) resolution. Toward this end, several recent works used dense tiling arrays to(More)
MOTIVATION Genetic interactions between genes reflect functional relationships caused by a wide range of molecular mechanisms. Large-scale genetic interaction assays lead to a wealth of information about the functional relations between genes. However, the vast number of observed interactions, along with experimental noise, makes the interpretation of such(More)
The activity in the living cell is carried out by a myriad network of interactions between macromolecules. These include interactions between proteins that form a functional complex, a protein modifying another protein in a transient interaction, a transcription factor that binds a specific DNA locus triggering a change in chromatin or transcription, and so(More)