Learn More
Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of(More)
The mechanisms by which embryonic stem (ES) cells self-renew while maintaining the ability to differentiate into virtually all adult cell types are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that help to maintain cellular identity during metazoan development by epigenetic modification of chromatin structure. PcG(More)
Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling, that the polycomb group protein enhancer of(More)
The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27(More)
Previous studies have implicated the Eed-Enx1 Polycomb group complex in the maintenance of imprinted X inactivation in the trophectoderm lineage in mouse. Here we show that recruitment of Eed-Enx1 to the inactive X chromosome (Xi) also occurs in random X inactivation in the embryo proper. Localization of Eed-Enx1 complexes to Xi occurs very early, at the(More)
The Polycomb Group Protein EZH2 is a transcriptional repressor involved in controlling cellular memory and has been linked to aggressive prostate cancer. Here we investigate the functional role of EZH2 in cancer cell invasion and breast cancer progression. EZH2 transcript and protein were consistently elevated in invasive breast carcinoma compared with(More)
The initiation of X-chromosome inactivation is thought to be tightly correlated with early differentiation events during mouse development. Here, we show that although initially active, the paternal X chromosome undergoes imprinted inactivation from the cleavage stages, well before cellular differentiation. A reversal of the inactive state, with a loss of(More)
On fertilisation, gametes undergo epigenetic reorganisation and re-establish totipotency. Here, we investigate links between chromatin remodelling and asymmetric maintenance of DNA methylation in the early mouse embryo. Using antibodies for lysine specific H3 methylation reveals that the male pronucleus is negative for di- and trimethyl H3-K9 yet the female(More)
In many higher organisms, 5%-15% of histone H2A is ubiquitylated at lysine 119 (uH2A). The function of this modification and the factors involved in its establishment, however, are unknown. Here we demonstrate that uH2A occurs on the inactive X chromosome in female mammals and that this correlates with recruitment of Polycomb group (PcG) proteins belonging(More)
Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27(More)