Arianna Menciassi

Learn More
In the recent past, the introduction of miniaturised image sensors with low power consumption, based on complementary metal oxide semiconductor (CMOS) technology, has allowed the realisation of an ingestible wireless capsule for the visualisation of the small intestine mucosa. The device has received approval from Food and Drug Administration and has gained(More)
This paper presents the concept design, the fabrication and the experimental characterization of a unit of a modular manipulator for minimal access surgery. Traditional surgical manipulators are usually based on metallic steerable needles, tendon driven mechanisms or articulated motorized links. In this work the main idea is to combine flexible fluidic(More)
The lamprey is one of the few vertebrates in which the neural control system for goal-directed locomotion including steering and control of body orientation is well described at a cellular level. In this report we review the modeling of the central pattern-generating network, which has been carried out based on detailed experimentation. In the same way the(More)
Wireless capsule endoscopy (WCE) can be considered an example of disruptive technology since it represents an appealing alternative to traditional diagnostic techniques. This technology enables inspection of the digestive system without discomfort or need for sedation, thus preventing the risks of conventional endoscopy, and has the potential of encouraging(More)
This paper describes a novel approach to capsular endoscopy that takes advantage of active magnetic locomotion in the gastrointestinal tract guided by an anthropomorphic robotic arm. Simulations were performed to select the design parameters allowing an effective and reliable magnetic link between the robot end-effector (endowed with a permanent magnet) and(More)
We present design and experimental performance results for a novel mechanism for robotic legged locomotion at the mesoscale (from hundreds of microns to tens of centimeters). The new mechanism is compact and strikes a balance between conflicting design objectives, exhibiting high foot forces and low power consumption. It enables a small robot to traverse a(More)
This paper describes the integration of an active locomotion module in a wirelessly powered endoscopic capsule. The device is a submersible capsule optimized to operate in a fluid environment in a liquid-distended stomach. A 3D inductive link is used to supply up to 400mW to the embedded electronics and a set of 4 radio-controlled motor propellers. The(More)
The authors present a novel magnetomechanical elastic element that can be loaded remotely by varying the magnetic field surrounding it and that is able to store and release mechanical energy upon external triggering. The magnetic torsion spring (MTS) is used as the core component of a self-contained miniature biopsy capsule (9 mm in diameter and 24 mm long)(More)
Tendon sheath actuation is found in many applications, particularly in robotic hands and surgical robots. Due to the friction between the tendon and sheath, many undesirable characteristic such as backlash, hysteresis and non-linearity are present. It is desirable to know the end-effector force and elongation of the tendon to control the system effectively,(More)