Arianna Dellavalle

Learn More
Reprogramming of somatic cells into neurons provides a new approach toward cell-based therapy of neurodegenerative diseases. A major challenge for the translation of neuronal reprogramming into therapy is whether the adult human brain contains cell populations amenable to direct somatic cell conversion. Here we show that cells from the adult human cerebral(More)
Dysferlin deficiency leads to a peculiar form of muscular dystrophy due to a defect in sarcolemma repair and currently lacks a therapy. We developed a cell therapy protocol with wild-type adult murine mesoangioblasts. These cells differentiate with high efficiency into skeletal muscle in vitro but differ from satellite cells because they do not express(More)
  • 1