Ariana E. Anderson

Learn More
In the multimodal neuroimaging framework, data on a single subject are collected from inherently different sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information each source provides is not independent; a subset of features from each modality maps to one or more common latent dimensions, which can be(More)
The analysis of fMRI data is challenging because they consist generally of a relatively modest signal contained in a high-dimensional space: a single scan can contain millions of voxel recordings over space and time. We present a method for classification and discrimination among fMRI that is based on modeling the scans as distance matrices, where each(More)
Independent component analysis (ICA) is a popular method for the analysis of functional magnetic resonance imaging (fMRI) signals that is capable of revealing connected brain systems of functional significance. To be computationally tractable, estimating the independent components (ICs) inevitably requires one or more dimension reduction steps. Whereas most(More)
The recent Chu et al. (2012) manuscript discusses two key findings regarding feature selection (FS): (1) data driven FS was no better than using whole brain voxel data and (2) a priori biological knowledge was effective to guide FS. Use of FS is highly relevant in neuroimaging-based machine learning, as the number of attributes can greatly exceed the number(More)
Machine Learning (ML) methods applied to real-time functional MRI (rt-fMRI) data provide the ability to predict and detect online any changes in cognitive states. Applications based on rt-fMRI require appropriate selection of features, preprocessing routines, and models in order to both be practical to implement and deliver interpretable results. In the(More)
Machine learning methods have been applied to classifying fMRI scans by studying locations in the brain that exhibit temporal intensity variation between groups, frequently reporting classification accuracy of 90% or better. Although empirical results are quite favorable, one might doubt the ability of classification methods to withstand changes in task(More)
OBJECTIVES An estimated 25% of type two diabetes mellitus (DM2) patients in the United States are undiagnosed due to inadequate screening, because it is prohibitive to administer laboratory tests to everyone. We assess whether electronic health record (EHR) phenotyping could improve DM2 screening compared to conventional models, even when records are(More)
Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet mathematical constraints such as sparse coding and positivity both provide alternate biologically-plausible frameworks for generating brain networks. Non-negative Matrix Factorization (NMF) would suppress negative BOLD signal by enforcing positivity.(More)
The definitive diagnosis of the type of epilepsy, if it exists, in medication-resistant seizure disorder is based on the efficient combination of clinical information, long-term video-electroencephalography (EEG) and neuroimaging. Diagnoses are reached by a consensus panel that combines these diverse modalities using clinical wisdom and experience. Here we(More)
The recent Deoni et al. (2013) manuscript proposed that breastfeeding was associated with increased cognitive ability and white-matter in older children (over 26 months), using ms-DESPOT MRI imaging to indirectly measure white matter in children who were either breastfed, formula fed, or combined breast+formula fed. In this response, we identify limitations(More)