Learn More
In the multimodal neuroimaging framework, data on a single subject are collected from inherently different sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information each source provides is not independent; a subset of features from each modality maps to one or more common latent dimensions, which can be(More)
Functional network connectivity (FNC) is a method of analyzing the temporal relationship of anatomical brain components, comparing the synchronicity between patient groups or conditions. We use functional-connectivity measures between independent components to classify between Schizophrenia patients and healthy controls during resting-state. Connectivity is(More)
Independent component analysis (ICA) is a popular method for the analysis of functional magnetic resonance imaging (fMRI) signals that is capable of revealing connected brain systems of functional significance. To be computationally tractable, estimating the independent components (ICs) inevitably requires one or more dimension reduction steps. Whereas most(More)
Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus, potentially before structural MRI, that does not require rare and transient epileptiform discharges or seizures on EEG. The visual interpretation of iPET is challenging and requires years of epilepsy-specific expertise. We have developed an automated computer-aided diagnostic(More)
Interictal electroencephalography (EEG) has clinically meaningful limitations in its sensitivity and specificity in the diagnosis of epilepsy because of its dependence on the occurrence of epileptiform discharges. We have developed a computer-aided diagnostic (CAD) tool that operates on the absolute spectral energy of the routine EEG and has both(More)
OBJECTIVE The current study explores relationships between mindfulness, emotional regulation, impulsivity, and stress proneness in a sample of participants recruited in a Diagnostic and Statistical Manual of Mental Disorder Fifth Edition Field Trial for Hypersexual Disorder and healthy controls to assess whether mindfulness attenuates symptoms of(More)
Developing EEG-based computer aided diagnostic (CAD) tools would allow identification of epilepsy in individuals who have experienced possible seizures, yet such an algorithm requires efficient identification of meaningful features out of potentially more than 35,000 features of EEG activity. Mutual information can be used to identify a subset of(More)
The analysis of fMRI data is challenging because they consist generally of a relatively modest signal contained in a high-dimensional space: a single scan can contain millions of voxel recordings over space and time. We present a method for classification and discrimination among fMRI that is based on modeling the scans as distance matrices, where each(More)
The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject's decision response to a given propositional statement based on independent(More)