Argiris I. Delis

Learn More
A formally fourth-order well-balanced hybrid finite volume/difference (FV/FD) numerical scheme for approximating the conservative form of two 1D extended Boussinesq systems is presented. The FV scheme is of the Godunov type and utilizes Roe's approximate Riemann solver for the advective fluxes along with well-balanced topography source term upwinding, while(More)
a r t i c l e i n f o a b s t r a c t A new methodology is presented to handle wave breaking over complex bathymetries in extended two-dimensional Boussinesq-type (BT) models which are solved by an unstructured well-balanced finite volume (FV) scheme. The numerical model solves the 2D extended BT equations proposed by Nwogu (1993), recast in conservation(More)
We construct a parallel algorithm, suitable for distributed memory architectures, of an explicit shock-capturing finite volume method for solving the two-dimensional shallow water equations. The finite volume method is based on the very popular approximate Riemann solver of Roe and is extended to second order spatial accuracy by an appropriate TVD(More)
  • 1