Arezou A Ghazani

Learn More
We investigated the intracellular uptake of different sized and shaped colloidal gold nanoparticles. We showed that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles (e.g., uptake half-life of 14, 50, and 74 nm nanoparticles is 2.10, 1.90, and 2.24 h, respectively). The findings from this study(More)
Through the use of various layer-by-layer polyelectrolyte (PE) coating schemes, such as the common poly(diallyldimethylammonium chloride)-poly(4-styrenesulfonic acid) (PDADMAC-PSS) system, the mammalian cellular uptake of gold nanorods can be tuned from very high to very low by manipulating the surface charge and functional groups of the PEs. The toxicity(More)
Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published(More)
We developed and validated a novel method for quantifying protein expression of cancer tumors in an accurate, sensitive, and high throughput format. This technique integrates quantum dots, tissue microarray, optical spectroscopy, and algorithm design for analysis of tumor biopsies. The integration of this method for tissue analysis in the clinic bears(More)
The diversity of clinical tumor profiling approaches (small panels to whole exomes with matched or unmatched germline analysis) may engender uncertainty about their benefits and liabilities, particularly in light of reported germline false positives in tumor-only profiling and use of global mutational and/or neoantigen data. The goal of this study was to(More)
Semiconductor quantum dots (qdots) are emerging as a new class of fluorescent labels. The unique optical properties of qdots make them appealing in laboratory diagnosis; however, qdot-based probes remain to be developed and evaluated for clinical laboratory applications. In this study, 2 different approaches were employed to label hematopoietic cells with(More)
BACKGROUND Array comparative genomic hybridisation (CGH) is a powerful method for the genetic analysis of lesional and normal tissues to identify genomic imbalances associated with malignancies. However, the use of this technique with DNA extracted from archival formalin fixed, paraffin embedded (FFPE) tissue specimens, the most widely available resource(More)
Synchronous primary breast cancer describes the occurrence of multiple tumors affecting one or both breasts at initial diagnosis. This provides a unique opportunity to identify tissue-specific genomic markers that characterize each tumor while controlling for the individual genetic background of a patient. The aim of this study was to examine the genomic(More)
The ability to detect rare cells (<100 cells/ml whole blood) and obtain quantitative measurements of specific biomarkers on single cells is increasingly important in basic biomedical research. Implementing such methodology for widespread use in the clinic, however, has been hampered by low cell density, small sample sizes, and requisite sample purification.(More)
UNLABELLED Circulating tumor cells (CTC) harvested from peripheral blood have received significant interest as sources for serial sampling to gauge treatment efficacy. Nanotechnology and microfluidic based approaches are emerging to facilitate such analyses. While of considerable clinical importance, there is little information on how similar or different(More)