Arezoo Motavalizadeh Ardekani

Learn More
We present fundamental solutions of low Reynolds number flows in a stratified fluid, including the case of a point force (Stokeslet) and a doublet. Stratification dramatically alters the flow by creating toroidal eddies, and velocity decays much faster than in a homogeneous fluid. The fundamental length scale is set by the competition of buoyancy, diffusion(More)
The hydrodynamics of an archetypal low-Reynolds number swimmer, called "squirmer," near a wall has been numerically studied. For a single squirmer, depending on the swimming mechanism, three different modes are distinguished: (a) the squirmer escaping from the wall, (b) the squirmer swimming along the wall at a constant distance and orientation angle, and(More)
Focusing and sorting cells and particles utilizing microfluidic phenomena have been flourishing areas of development in recent years. These processes are largely beneficial in biomedical applications and fundamental studies of cell biology as they provide cost-effective and point-of-care miniaturized diagnostic devices and rare cell enrichment techniques.(More)
Small planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady forces such as history and added mass forces on the low-Reynolds-number propulsion of small organisms, e.g. Paramecium, is poorly understood. In this paper, we derive the fundamental(More)
Bacterial aggregation and patchiness play an important role in a variety of ecological processes such as competition, adaptation, epidemics, and succession. Here, we demonstrate that hydrodynamics of their environment can lead to their aggregation. This is specially important since microbial habitats are rarely at rest (e.g., ocean, blood stream, flow in(More)
We propose that the rheological properties of background fluid play an important role in the interaction of microorganisms with the flow field. The viscoelastic-induced migration of microorganisms in a vortical flow leads to the emergence of a limit cycle. The shape and formation rate of patterns depend on motility, vorticity strength, and rheological(More)
We report on a capillary-based microfluidic platform for the fabrication of non-spherical sodium alginate microgels. The sodium alginate droplets were crosslinked off-chip in a mixture of barium acetate and glycerol solution. Novel morphologies such as tear drop, lamp-like, mushroom-like, double-dimpled and bowl-like microgels were fabricated by controlling(More)
Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to(More)
The motion of a sphere normal to a wall is investigated. The normal stress at the surface of the sphere is calculated and the viscoelastic effects on the normal stress for different separation distances are analysed. For small separation distances, when the particle is moving away from the wall, a tensile normal stress exists at the trailing edge if the(More)