Aretha L. Teckentrup

Learn More
We consider the numerical solution of elliptic partial differential equations with random coefficients. Such problems arise, for example, in uncertainty quantification for groundwater flow. We describe a novel variance reduction technique for the standard Monte Carlo method, called the multilevel Monte Carlo method. The main result is that in certain(More)
We consider a finite element approximation of elliptic partial differential equations with random coefficients. Such equations arise, for example, in uncertainty quantification in subsurface flow modelling. Models for random coefficients frequently used in these applications, such as log-normal random fields with exponential covariance, have only very(More)
We consider the application of multilevel Monte Carlo methods to elliptic PDEs with random coefficients. We focus on models of the random coefficient that lack uniform ellipticity and boundedness with respect to the random parameter, and that only have limited spatial regularity. We extend the finite element error analysis for this type of equation, carried(More)
Stochastic collocation methods for approximating the solution of partial differential equations with random input data (e.g., coefficients and forcing terms) suffer from the curse of dimensionality whereby increases in the stochastic dimension cause an explosion of the computational effort. We propose and analyze a multilevel version of the stochastic(More)
We discuss the application of multilevel Monte Carlo methods to elliptic partial differential equations with random coefficients. Such problems arise, for example, in uncertainty quantification in subsurface flow modeling. We give a brief review of recent advances in the numerical analysis of the multilevel algorithm under minimal assumptions on the random(More)
We study the use of Gaussian process emulators to approximate the parameter-to-observation map or the negative log-likelihood in Bayesian inverse problems. We prove error bounds on the Hellinger distance between the true posterior distribution and various approximations based on the Gaussian process emulator. Our analysis includes approximations based on(More)
In this talk we address the problem of the prohibitively large computational cost of existing Markov chain Monte Carlo (MCMC) methods for large–scale applications with high dimensional parameter spaces, e.g. uncertainty quantification in porous media flow. We propose a new multilevel Metropolis-Hastings algorithm, and give an abstract, problem dependent(More)
  • 1