Learn More
Cannabinoid receptors and their endogenous ligands (endocannabinoids) have been implicated in cocaine and amphetamine reward. Their role in psychostimulant-induced behavioural sensitization still has to be determined. The purpose of the present study was, for one, to compare the effects of a pharmacological and genetic manipulation of CB(1) cannabinoid(More)
Endogenous cannabinoids modulate the activity of dopamine reward pathways and may play a role in the development of behavioural sensitization to psychostimulants. Here, we investigated the effects of the CB(1) cannabinoid receptor antagonist AM251 on amphetamine-induced locomotor sensitization in mice. Furthermore, we measured post-mortem monoamine(More)
Evoked fast excitatory postsynaptic potentials and slow inhibitory postsynaptic potentials were measured in mouse CA1 neurons in hippocampal slices after chronic ethanol treatment in vivo. Intracellular recordings were made 2, 4 and 6 hr after ethanol withdrawal, i.e., after the beginning of slice preparation. The resting membrane potentials were(More)
BACKGROUND & AIMS Interstitial cells of Cajal (ICCs) are responsible for slow, wave-driven, rhythmic, peristaltic motor patterns in the gastrointestinal tract. The aim was to identify and characterize the ion channels that generate the underlying pacemaker activity. METHODS Single ion channel recordings were obtained from nonenzymatically isolated ICCs(More)
After their discovery, the two known cannabinoid receptors, CB(1) and CB(2), have been the focus of research into the cellular signalling mechanisms of cannabinoids. The initial assessment, mainly derived from expression studies, was that cannabinoids, via G(i/o) proteins, negatively modulate cyclic AMP levels, and activate inward rectifying K(+) channels.(More)
BACKGROUND AND PURPOSE Cannabinoid receptor agonists reduce intestinal propulsion in rodents through the CB(1) receptor. In addition to its antagonistic activity at this receptor, rimonabant (N-(piperidino)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxyamide) alone augments intestinal transit. Using rat and guinea-pig ileum MPLM(More)
Interactions between cannabinoid CB(1) and GABA receptors and ligands were investigated in the myenteric plexus-longitudinal muscle of the guinea pig ileum. Electrically evoked contractions of the myenteric plexus-longitudinal muscle were inhibited by the cannabinoid receptor agonist CP55,940 ((-)-cis-3-[2-Hydroxy-4-(1,1-dimethylheptyl)(More)
The electrophysiological response evoked by ATP was investigated in the DDT1 MF-2 smooth muscle cell line using the microelectrode technique and the whole-cell patch clamp technique. Application of ATP (10(-3) M) to the bathing solution caused a small initial depolarization of the cell membrane, followed by hyperpolarization and slow depolarization. During(More)
The CB(1) cannabinoid receptor has been implicated in the control of fear and anxiety. We investigated the effects of genetic and pharmacological blockade of the CB(1) cannabinoid receptor on the behaviour of CD1 mice using three different ethological models of fear and anxiety (elevated T-maze and plus-maze and open field test of emotionality).(More)
1. The effects of cannabinoid (CB) receptor stimulation on membrane currents in single cells from the Syrian hamster vas deferens cell line DDT1MF-2 were investigated using the whole cell patch clamp technique. 2. The CB receptor agonist CP55,940 evoked a concentration-dependent transient outward current. The selective CB1 receptor ligand SR141716 (1(More)