Arbia Khemiri

Learn More
Bacterial surface-associated proteins play crucial roles in host-pathogen interactions and pathogenesis. The identification of these proteins represents an important goal of bacterial proteomics for vaccine development, but also for environmental concerns such as microbial biosensing. Here, we developed such an approach for Legionella pneumophila, a(More)
Legionella pneumophila is the agent responsible for legionellosis. Numerous bacteria, including L. pneumophila, can enter into a viable but not culturable (VBNC) state under unfavorable environmental conditions. In this state, cells are unable to form colonies on standard medium but are still alive. Here we show that VBNC L. pneumophila cells, obtained by(More)
Legionella pneumophila (L. pneumophila) is a Gram-negative bacterium, which can be found worldwide in aquatic environments. It tends to persist because it is often protected within biofilms or amoebae. L. pneumophila biofilms have a major impact on water systems, making the understanding of the bacterial physiological adaptation in biofilms a fundamental(More)
In prokaryote organisms, N-glycosylation of proteins is often correlated to cell-cell recognition and extracellular events. Those glycoproteins are potential targets for infection control. To date, many surface-glycosylated proteins from bacterial pathogens have been described. However, N-linked Pseudomonas surface-associated glycoproteins remain(More)
Phosphorylation and dephosphorylation at Ser-46 in HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is controlled by the bifunctional HPr kinase/phosphorylase (HprK/P). In Gram-positive bacteria, P-Ser-HPr controls (1) sugar uptake via the PTS; (2) catabolite control protein A (CcpA)-mediated carbon(More)
Previous studies have shown that Pseudomonas fluorescens and its lipopolysaccharide (LPS) exert dose-related cytotoxic effects on neurons and glial cells. In the present work, we investigated the time course effect of P. fluorescens MF37 and its LPS on cultured rat cerebellar granule neurons. The kinetics of binding of P. fluorescens to cerebellar granule(More)
Better understanding of uranyl toxicity in bacteria is necessary to optimize strains for bioremediation purposes or for using bacteria as biodetectors for bioavailable uranyl. In this study, after different steps of optimization, Escherichia coli cells were exposed to uranyl at low pH to minimize uranyl precipitation and to increase its bioavailability.(More)
The genome of Legionella pneumophila reveals the presence of a large number of genes coding for eukaryotic-like proteins. By using database searches and homology investigations, we identified three proteins in L. pneumophila whose sequences share similarities with that of eukaryotic polypeptides (lpg0211, lpg1974 and lpg1982). In eukaryotes, the(More)
Advances in proteomics techniques over the past decade, closely integrated with genomic and physicochemical approach, have played a great role in developing knowledge of the biofilm lifestyle of bacteria. Despite bacterial proteome versatility, many studies have demonstrated the ability of proteomics approaches to elucidating the biofilm phenotype. Though(More)
Most often, the use of ProteoMiner beads has been restricted to human serum proteins for the normalization of major proteins, such as albumin. However, there are other situations of interest in which the presence of major proteins would quench the signals of low abundance polypeptides. We propose the use of these beads for investigating the envelope of the(More)
  • 1