Aravind Kumar Chandiran

Learn More
The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co((II/III))tris(bipyridyl)-based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular(More)
Mesoporous TiO2 nanoparticle films are used as photoanodes for high-efficiency dye-sensitized solar cells (DSCs). In spite of excellent photovoltaic power conversion efficiencies (PCEs) displayed by titanium dioxide nanoparticle structures, the transport rate of electrons is known to be low due to low electron mobility. So the alternate oxides, including(More)
We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH(3)NH(3)PbI(3)) perovskite/TiO(2) heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH(3)NH(3)I and PbI(2) in γ-butyrolactone on a 400 nm thick film of TiO(2) (anatase) nanosheets exposing (001) facets. A gold film(More)
Low-temperature processing of dye-sensitized solar cells (DSCs) is crucial to enable commercialization with low-cost, plastic substrates. Prior studies have focused on mechanical compression of premade particles on plastic or glass substrates; however, this did not yield sufficient interconnections for good carrier transport. Furthermore, such compression(More)
We report the use of Y(3+)-substituted TiO2 (0.5%Y-TiO₂) in solid-state mesoscopic solar cells, consisting of CH₃NH₃PbI₃ as the light harvester and spiro-OMeTAD as the hole transport material. A power conversion efficiency of 11.2% under simulated AM 1.5 full sun illumination was measured. A 15% improvement in the short-circuit current density was obtained(More)
Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox(More)
DOI: 10.1002/adma.201306271 hole free titanium dioxide overlayer by atomic layer deposition (ALD), which blocks the parasitic back reaction effectively for high effi cient solid-state perovskite absorber solar cells. ALD is capable of depositing conformal pin-hole free oxide layers on high aspect ratio structures (length to diameter of the material or pore)(More)
Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling.(More)
We present a photoanode for dye-sensitized solar cell (DSC) based on ZnO nanoshell deposited by atomic layer deposition at 150 °C on a mesoporous insulating template. An ultrathin layer of ZnO between 3 and 6 nm, which exhibits quantum confinement effect, is found to be sufficient to transport the photogenerated electrons to the external contacts and(More)
In this work, we report the use of bulky substitutions in a new heteroleptic ruthenium(II) bipyridine complex, Ru(NCS)2LL', coded TT-230 to obtain high open-circuit potential in a dye-sensitized solar cell (where L is a bipyridine ligand appended with two cyclopenta(2,1-b;3,4-bA)dithiophene moieties, and L' = 4,4,'-dicarboxylic acid 2,2'-bipyridine). The(More)