Arash Babaei

Learn More
INTRODUCTION Coherent fluctuations of blood oxygenation level dependent (BOLD) signal have been referred to as "functional connectivity" (FC). Our aim was to systematically characterize FC of underlying neural network involved in swallowing, and to evaluate its reproducibility and modulation during rest or task performance. METHODS Activated seed regions(More)
A better understanding of the central control of the physiology of deglutition is necessary for devising interventions aimed at correcting pathophysiological conditions of swallowing. Positive modulation of the cortical swallowing network can have clinical ramifications in dysphagia due to central nervous system deficits. Our aim was to determine the effect(More)
Functional MRI (fMRI) studies have demonstrated that a number of brain regions (cingulate, insula, prefrontal, and sensory/motor cortices) display blood oxygen level-dependent (BOLD) positive activity during swallow. Negative BOLD activations and reproducibility of these activations have not been systematically studied. The aim of our study was to(More)
BACKGROUND Intrinsic synchronous fluctuations of the functional magnetic resonance imaging signal are indicative of the underlying 'functional connectivity' (FC) and serve as a technique to study dynamics of the neuronal networks of the human brain. Earlier studies have characterized the functional connectivity of a distributed network of brain regions(More)
  • 1