Aranda R. Duan

Learn More
Regulation of microtubule dynamic instability is crucial for cellular processes, ranging from mitosis to membrane transport. Stathmin (also known as oncoprotein 18/Op18) is a prominent microtubule destabilizer that acts preferentially on microtubule minus ends. Stathmin has been studied intensively because of its association with multiple types of cancer,(More)
BACKGROUND Low-frequency (delta/theta) oscillations in the thalamocortical system are elevated in schizophrenia during wakefulness and are also induced in the N-methyl-D-asparate receptor hypofunction rat model. To determine whether abnormal delta oscillations might produce functional deficits, we used optogenetic methods in awake rats. We illuminated(More)
Tau is a neuronal protein that stabilizes the microtubule (MT) network, but it also forms filaments associated with Alzheimer's disease. Understanding Tau-MT and Tau-Tau interactions would help to establish Tau function in health and disease. For many years, literature reports on Tau-MT binding behavior and affinity have remained surprisingly contradictory(More)
EB1 is a highly conserved microtubule (MT) plus end tracking protein (+TIP) involved in regulating MT dynamics, but the mechanisms of its effects on MT polymerization remain undefined. Resolving this question requires understanding how EB1 interacts with MTs. Previous electron microscopy of the S. pombe EB1 homolog Mal3p suggested that Mal3p binds(More)
MTBindingSim is a program that enables users to simulate experiments in which proteins or other ligands (e.g., drugs) bind to microtubules or other polymers under various binding models. The purpose of MTBindingSim is to help researchers and students gain an intuitive understanding of binding behavior and design experiments to distinguish between different(More)
Microtubule cosedimentation assays have long been used to study the affinity of interactions between Tau protein and microtubules. While these assays are very useful for characterizing and comparing the effects of alterations to either Tau or the microtubule filaments, they can also be problematic. We provide a set of straightforward instructions for(More)
Tau is a multifaceted neuronal protein that stabilizes microtubules (MTs), but the mechanism of this activity remains poorly understood. Questions include whether Tau binds MTs laterally or longitudinally and whether Tau's binding affinity depends on the nucleotide state of tubulin. We observed that Tau binds tightly to Dolastatin-10 tubulin rings and(More)
  • 1