Learn More
This study set out to analyse the potential ability of some 5-hydroxytryptamine (5-HT) receptor ligands widely used in cardiovascular experimental models to interact with vascular alpha1-adrenoceptors in the pithed rat. These ligands included: methiothepin, methysergide and metergoline (5-HT(1)/5-HT2); WAY-100635, buspirone, ipsapirone and(More)
This study evaluated the possible involvement of 5-HT(2B) receptors in long-lasting hypotension to 5-hydroxytryptamine (5-HT), which is predominantly mediated by 5-HT7 receptors, in anaesthetised vagosympathectomized rats. Intravenous injections of 5-HT and 5-carboxamidotryptamine (5-CT) elicited a dose-dependent hypotension that was dose-dependently(More)
Testosterone induces vasorelaxation through non-genomic mechanisms in several isolated blood vessels, but no study has reported its effects on the canine basilar artery, an important artery implicated in cerebral vasospasm. Hence, this study has investigated the mechanisms involved in testosterone-induced relaxation of the canine basilar artery. For this(More)
It has been suggested that the external carotid vasodilatation produced by serotonin (5-hydroxytryptamine; 5-HT) in anaesthetised dogs with intact vagosympathetic trunks is mediated by sympatho-inhibitory '5-HT1D' receptors and musculotropic '5-HT1-like' receptors. The present study has re-analysed this suggestion with regard to the classification schemes(More)
Imidazoline derivatives (e.g. clonidine and moxonidine) and alpha(2)-adrenoceptor agonists (e.g. B-HT 933) have been shown to inhibit sympathetically-induced [(3)H]noradrenaline release in several isolated blood vessels. The present study has compared the potential capability of agonists at imidazoline I(1/2) receptors and/or alpha(1/2)-adrenoceptors to(More)
Progesterone and 17β-estradiol induce vasorelaxation through non-genomic mechanisms in several isolated blood vessels; however, no study has systematically evaluated the mechanisms involved in the relaxation induced by 17β-estradiol and progesterone in the canine basilar and internal carotid arteries that play a key role in cerebral circulation. Thus,(More)
In vitro studies have indicated that 17β-oestradiol exerts beneficial effects on the cardiovascular system by activating the nitric oxide pathway. However, these effects have not been demonstrated in vivo in the systemic vasculature of rats made diabetic through streptozotocin induction. Therefore, the goal of this study was to determine the effect of(More)
It has been suggested that N,N-di-n-propyl-dopamine (dopamine analogue) decreased heart rate in rats through stimulation of dopamine receptors. Nevertheless, the role of prejunctional dopamine D1/2-like receptors or even α2-adrenoceptors to mediate cardiac sympatho-inhibition induced by dopamine remains unclear. Hence, this study identified the(More)
Serotonin (5-hydroxytryptamine; 5-HT) has been shown to produce vascular sympatho-inhibition in a wide variety of isolated blood vessels by activation of prejunctional 5-HT1 receptors. After considering the mechanisms involved in modulating neuroeffector transmission, the present review analyzes the experimental findings identifying the pharmacological(More)
Serotonin (5-hydroxytryptamine; 5-HT) is capable of inhibiting the tachycardic responses elicited by sympathetic stimulation, but not by exogenous noradrenaline, in pithed rats pre-treated with desipramine. More recently, it has been shown that this cardiac sympatho-inhibitory response to 5-HT, mediated by prejunctional 5-HT1 receptors as well as putative(More)