Araceli Oropeza-Aburto

Learn More
Low phosphate (Pi) availability is one of the major constraints for plant productivity in natural and agricultural ecosystems. Plants have evolved a myriad of developmental and biochemical mechanisms to increase internal Pi uptake and utilization efficiency. One important biochemical pathway leading to an increase in internal Pi availability is the(More)
It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the(More)
Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular(More)
Low phosphate (Pi) availability constrains plant development and seed production in both natural and agricultural ecosystems. When Pi is scarce, modifications of root system architecture (RSA) enhance the soil exploration ability of the plant and lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent mechanism reprograms primary root growth in(More)
Proper root growth is crucial for anchorage, exploration, and exploitation of the soil substrate. Root growth is highly sensitive to a variety of environmental cues, among them water and nutrient availability have a great impact on root development. Phosphorus (P) availability is one of the most limiting nutrients that affect plant growth and development(More)
Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade,(More)
Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system(More)
PLDZ2 is a member of the Arabidopsis phospholipase D gene family that is induced in both shoot and root in response to phosphate (Pi) starvation. Recently, through deletion and gain-of-function analyses of the PLDZ2 promoter, we identified a 65 bp region (denominated enhancer EZ2) capable of conferring tissue-specific and low-Pi responses to a minimal(More)
Low inorganic phosphate (Pi) availability causes terminal differentiation of the root apical meristem (RAM), a phenomenon known as root meristem exhaustion or determined growth. Here, we report that the CLE14 peptide acts as a key player in this process. Low Pi stress induces iron mobilization in the RAM through the action of LPR1/LPR2, causing expression(More)
  • 1