Learn More
RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database offering curated knowledge of the transcriptional regulatory network of Escherichia coli K12, currently the best-known electronically encoded database of the genetic regulatory network of any free-living organism. This paper summarizes the improvements, new biology and new features(More)
This article summarizes our progress with RegulonDB (http://regulondb.ccg.unam.mx/) during the past 2 years. We have kept up-to-date the knowledge from the published literature regarding transcriptional regulation in Escherichia coli K-12. We have maintained and expanded our curation efforts to improve the breadth and quality of the encoded experimental(More)
RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database of the best-known regulatory network of any free-living organism, that of Escherichia coli K-12. The major conceptual change since 3 years ago is an expanded biological context so that transcriptional regulation is now part of a unit that initiates with the signal and continues with(More)
EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the(More)
RegulonDB is a DataBase that integrates biological knowledge of the mechanisms that regulate the transcription initiation in Escherichia coli , as well as knowledge on the organization of the genes and regulatory signals into operons in the chromosome. The operon is the basic structure used in RegulonDB to describe the elements and properties of(More)
Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory(More)
We present here a computational analysis showing that sigma70 house-keeping promoters are located within zones with high densities of promoter-like signals in Escherichia coli, and we introduce strategies that allow for the correct computer prediction of sigma70 promoters. Based on 599 experimentally verified promoters of E.coli K-12, we generated and(More)
MOTIVATION One of the most common methodologies to identify cis-regulatory sites in regulatory regions in the DNA is that of weight matrices, as testified by several articles in this issue. An alternative to strengthen the computational predictions in regulatory regions is to develop methods that incorporate more biological properties present in such DNA(More)
MOTIVATION As one of the best-characterized free-living organisms, Escherichia coli and its recently completed genomic sequence offer a special opportunity to exploit systematically the variety of regulatory data available in the literature in order to make a comprehensive set of regulatory predictions in the whole genome. RESULTS The complete genome(More)
The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. In Escherichia coli, we have established a sequence pattern that distinguishes regulatory from nonregulatory regions. The density of promoter-like sequences, that could be recognizable by RNA polymerase and may function as(More)