Apostolos G. Gittis

Learn More
The structure of a highly conserved complex between a 58-nucleotide domain of large subunit ribosomal RNA and the RNA-binding domain of ribosomal protein L11 has been solved at 2.8 angstrom resolution. It reveals a precisely folded RNA structure that is stabilized by extensive tertiary contacts and contains an unusually large core of stacked bases. A bulge(More)
Plasmodium falciparum-infected erythrocytes bind to chondroitin sulfate A (CSA) in the placenta via the VAR2CSA protein, a member of the P. falciparum erythrocyte membrane protein-1 family, leading to life-threatening malaria in pregnant women with severe effects on their fetuses and newborns. Here we describe the structure of the CSA binding DBL3x domain,(More)
Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite(More)
The dielectric properties of proteins are poorly understood and difficult to describe quantitatively. This limits the accuracy of methods for structure-based calculation of electrostatic energies and pK(a) values. The pK(a) values of many internal groups report apparent protein dielectric constants of 10 or higher. These values are substantially higher than(More)
The MutT enzyme (129 residues) catalyzes the hydrolysis of normal and mutagenic nucleoside triphosphates, such as 8-oxo-dGTP, by substitution at the rarely attacked beta-P, to yield NMP and pyrophosphate. Previous heteronuclear NMR studies of MutT have shown the secondary structure to consist of a five-stranded mixed beta-sheet connected by the loop(More)
  • 1